\documentclass[12pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym, hyperref} \newtheorem{claim} {Claim} \begin{document} \begin{center} \textbf{MATH 3100 Project on Constructing the Rationals.} \textbf{Part 2.} \end{center} \noindent Due date:11:59 pm Monday April 8. \ \noindent Exercise 2. \ i.) [Regarding the addition.] Let the operation $\oplus$ be defined on the equivalence classes by \begin{eqnarray*} [(a,b)] \oplus [(c,d)] & = & [(ad + bc, bd)]. \end{eqnarray*} Show that $\mathbb{Q}$ with the operation $\oplus$ is an abelian group. \ ii.)[Regarding the multiplication.] Define the operation $\otimes$ on the equivalence classes by \begin{eqnarray*} [(a,b)] \otimes [(c,d)] & = & [(ac, bd)]. \end{eqnarray*} Show that $\mathbb{Q}- \{\mbox{the additive identity of } \oplus\}$ (i.e. the set $\mathbb{Q}$ with the additive identity removed) is an abelian group with the operation $\otimes$. \ iii.) [Identifying the integers inside the rationals.] Define $\varphi: \mathbb{Z} \rightarrow \mathbb{Q}$ by $\varphi(z) = [(z,1)]$. Show that \qquad \qquad a.) $\varphi$ is 1-to-1. \qquad \qquad b.) $\varphi$ is a homomorphism from $(\mathbb{Z}, +)$ to $(\mathbb{Q}, \oplus)$. \qquad \qquad c.) $\varphi$ is a homomorphism from $(\mathbb{Z}, \cdot)$ to $(\mathbb{Q}, \otimes)$. \end{document}