
Math 3100 Test 01 Key
Michel Smith

February 16, 2024

Show all your work for each problem, if the work is incomplete or incorrect
you may not receive full credit for that problem. Indicate your reasoning,
partial credit will be given if the reasoning is correct and only computational
errors are made. If you do scratch work, indicate what is scratch work; no
credit will be taken off for errors in the scratch work.

Problem 1. Determine if the following two logic statements are equivalent:

(∼ P )⇒ Q and (∼ Q)⇒ P.

Proof. We use the truth tables to answer the question:

P Q ∼ P ∼ P ⇒ Q ∼ Q ∼ Q→ P
T T F T F T
T F F T T T
F T T T F T
F F T F T F

Since columns four and six match, it follows that they are equivalent,

Problem 2. Prove two of the following theorems about the integers using
the axioms of the integers, make sure to indicate the reason for each step.
However, you may assume the usual rules (axioms) about associativity and
commutativity of both multiplication and addition; so you do not have to
indicate reasons for using associativity and commutativity . [If you do all
three, I will grade the best two out of three.]

a. Theorem. If a is an integer, then 0 · a = 0.

Proof. Suppose that a is an integer. Then:
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0 · a = (0 + 0) · a (1)

= 0 · a + 0 · a (2)

0 · a− 0 · a = 0 · a + 0 · a− 0 · a (3)

0 = 0 · a + 0 (4)

0 = 0 · a (5)

0 · a = 0.

Reasoning:
(1) Property of the additive identity;
(2) Distribution axiom;
(3) Adding the additive inverse of 0 · a to both sides of the equation;
(4) Property of the additive inverse;
(5) Property of the additive identity.

b. Theorem. The additive identity is unique.

Proof. Suppose that integer x is another additive identity. Then

0 + x = x (6)

0 + x = 0 (7)

0 = x. (8)

Reasoning:
(6) Property of the additive identity;
(7) By the assumption that x is also an additive identity;
(8) By the transitive property of the equal sign from equations (6) and

(7).

c. Theorem. If a is an integer, then −a = −1 · a.

Proof. Given that a is an integer we have:

a +−1 · a = 1 · a +−1 · a (9)

= (1− 1) · a (10)

= 0 · a (11)

= 0 (12)

a +−a = 0. (13)
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Therefore:

a +−1 · a = a +−a (14)

−a + a +−1 · a = −a + a +−a
0 +−1 · a = 0 +−a (15)

−1 · a = −a (16)

−a = −1 · a.

Reasoning:
(10) Distributive axiom;
(11) Property of the additive inverse −1;
(12) By the proof of problem 2a (which may be considered a lemma to

this problem):
(13) Property of the additive inverse;
(14) Transitive property of the equal sign from equations (12) and (13);
(15) Property of the additive inverse −a;
(16) Property of the additive identity.

Problem 3. Prove for each positive integer n, that 3|(2n3 + n).

Proof. We prove the statement by induction. First we verity the statement
for n = 1; for n = 1 we have 2n3 +n = 2 + 1 = 3 which is divisible by 3. Our
induction hypothesis is that for the integer k ≥ 1 there exists an integer q so
that 2k3 + k = 3q. Then for n = k + 1 we have,

2(k + 1)3 + k + 1 = 2(k3 + 3k2 + 3k + 1) + k + 1

= 2k3 + 6k2 + 6k + 2 + k + 1

= 2k3 + k + 6k2 + 6k + 3

= 3q + 6k2 + 6k + 3

= 3(q + 2k2 + 2k + 1).

So the quantity is divisible by 3 and so we have shown that if the statement
is true for n = k then it’s true for n = k + 1 so the statement follows from
the induction axiom.
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Problem 4. Prove the following identity.

n∑
i=1

i(i + 1) =
n(n + 1)(n + 2)

3
.

Proof. We prove the statement by induction. First we verity the statement
for n = 1; for n = 1 we have:

Leftside =
1∑

i=1

i(i + 1) = 1 · (1 + 1) = 2

Rightside =
1(̇1 + 1)(1 + 2)

3
=

6

3
= 2,

which verifies the statement for n = 1’ Our induction hypothesis is that for
the integer k ≥ 1 we have:

k∑
i=1

i(i + 1) =
k(k + 1)(k + 2)

3

Next consider

k+1∑
i=1

i(i + 1) =
k∑

i=1

i(i + 1) + (k + 1)(k + 2)

=
k(k + 1)(k + 2)

3
+ (k + 1)(k + 2)

=
k(k + 1)(k + 2)

3
+

3(k + 1)(k + 2)

3

=
(k + 1)(k + 2)(k + 3)

3
.

Where the second equation follows from the induction hypothesis and the
fourth equation from factoring. And thus we have shown that if the statement
is true for n = k then it’s true for n = k + 1 so the theorem follows from the
induction axiom.

Problem 5. Prove the following Fibonacci identity.

n∑
i=1

F2i−1 = F2n.
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Proof. We prove the statement by induction. First we verity the statement
for n = 1; for n = 1 we have:

Leftside =
1∑

i=1

F2i−1 = F1 = 1

Rightside = F2·1 = F2 = 1,

which verifies the statement for n = 1. Our induction hypothesis is that for
the integer k ≥ 1 we have:

k∑
i=1

F2i−1 = F2k.

Next consider

k+1∑
i=1

F2i−1 =
k∑

i=1

F2i−1 + F2k+1

= F2k + F2k+1

= F2k+2 = F2(k+1).

Where the second equation follows from the induction hypothesis. So we
have shown that if the statement is true for n = k then it’s true for n = k+1
so the theorem follows from the induction axiom.
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Problem 6. Suppose that each of a and b is a positive integer. Let S be the
following set:

S = {a− bq ≥ 0|q ≥ 0}.

a. Prove that if 0 ∈ S then a|b.

Proof. If 0 ∈ S the there exists an integer q so that a − bq = 0 then a = bq
and so b|a.

Now, I didn’t realize (until I started the grading process) that I wrote the
conclusion backwards. It should have said, “if 0 ∈ S then b|a.” So, since I
made the mistake, everyone will get full credit for this part of problem 6.

b. Prove that if r is the least member of S, then r < b.

Proof. If r = 0 then clearly, since b is positive, we have r < b. So we may
assume that r > 0. Suppose then that r ≥ b. By the definition of S, there is
an integer q so that r = a− bq. Then:

r ≥ b

a− bq ≥ b

a− bq − b ≥ 0

a− b(q + 1) ≥ 0.

So the integer a − b(q + 1) ∈ S. And we claim that this integer is less than
r which would contradict our assumption that r is the least integer in S,

Proof of Claim.

0 < 1

q + 0 < q + 1

bq < b(q + 1)

−bq > −b(q + 1)

a− bq > a− b(q + 1)

r > a− b(q + 1).
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Extra Credit: Prove the following Fibonacci identity.

n∑
i=1

F 2
i = FnFn+1.

Proof. We prove the statement by induction. First we verity the statement
for n = 1; for n = 1 we have:

Leftside =
1∑

i=1

F 2
1 = 12 = 1

Rightside = F1F1+1 = 1 · 1 = 1,

which verifies the statement for n = 1’ Our induction hypothesis is that for
the integer k ≥ 1 we have:

k∑
i=1

F 2
i = FkFk+1.

Next consider

k+1∑
i=1

F 2
i =

k∑
i=1

F 2
i + F 2

k+1

= FkFk+1 + F 2
k+1

= (Fk + Fk+1)Fk+1

= (Fk+2)Fk+1

= Fk+1F(k+1)+1

Where the second equation follows from the induction hypothesis. So we
have shown that if the statement is true for n = k then it’s true for n = k+1
so the theorem follows from the induction axiom.
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