
MATH3100 Dr. Smith Test # 2, Friday March 5, 2024. Make sure to
show all your work. You may not receive full credit if the accompanying
work is incomplete or incorrect. If you do scratch work make sure to indicate
scratch work - I will not take off points for errors in the scratch work if it
is so labeled and will assume that the scratch work is not part of the final
answer/proof.

1. Let G be a group. Prove two of the following statements; you may prove
all three for extra credit.

a. Let x ∈ G, prove that the inverse of x in G is unique.

Solution. Suppose that x̂ is an inverse of x. Then:

x · x̂ = e

x−1 · x · x̂ = x−1 · e
e · x̂ = x−1

x̂ = x−1.

b. Prove that if x, y and z are elements of G, then

(xyz)−1 = z−1y−1x−1.

Solution.

(xyz) · (xyz)−1 = e

x−1 · (xyz) · (xyz)−1 = x−1 · e
(x−1 · x)(yz) · (xyz)−1 = x−1

eyz · (xyz)−1 = x−1

yz · (xyz)−1 = x−1.

Continuing similarly,

yz · (xyz)−1 = x−1

y−1yz · (xyz)−1 = y−1x−1

z · (xyz)−1 = y−1x−1

z−1z · (xyz)−1 = z−1y−1x−1

(xyz)−1 = z−1y−1x−1.
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c. If F : G→ G is a homomorphism, then F maps the identity into itself.
(I.e.: F (e) = e.)

Solution. since F is a homomorphism we have,

F (e · e) = F (e) · F (e)

F (e) = F (e) · F (e)

(F (e))−1 · F (e) = (F (e))−1 · F (e) · F (e)

e = e · F (e)

e = F (e).

2. Consider the multiplication operator for Z10.
a. Construct the multiplication table for (Z10, ·10).

Solution. [Note that I picked 10 so that the multiplication modulo 10 is
easy: you just do standard multiplication and keep the rightmost integer in
the answer.]

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

b. Argue that the set {1, 3, 7, 9} with the operator ·10 is a subgroup of
Z10.
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Solution. Multiplication table for {1, 3, 7, 9}:

1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

1. Associativity follows from the associativity of the original operation in
Z10.

2. The above table verifies closure.
3. Since the set {1, 3, 7, 9} contains 1 and since that’s the identity, then

{1, 3, 7, 9} contains the identity.
4. Since 1 is in each row and column of the table, we see that each element

has an inverse.

3. Prove that 3
√

9 is irrational.

Proof. [Solution]
Method 1: Assume that the theorem is not true and that 3

√
9 = a

b
where

each of a and b is a positive integer. Then, by the Fundamental Theorem of
Arithmetic, each of a and b is uniquely represented by 3 to a power times a
product of primes that does not include 3:

a = 3nQ

b = 3kP.

Where n and k are non-negative integers and 3 divides neither Q nor P .
Then:

3
√

9 =
a

b
9b3 = a3

a3 = 33nQ3

b3 = 33kP 3

9 · 33kP 3 = 33nQ3

33k+2P 3 = 33nQ3.
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By the Fundamental Theorem, this implies that 3k + 1 = 3n which in turn
tells us that 3 divides 2 and this is a contradiction because 3 > 2. So our
original assumption was false and 3

√
9 is irrational.

Method 2: Assume that the theorem is not true and that 3
√

9 = a
b

where
each of a and b is a positive integer and a and b are relatively prime (i.e. a

b

is in lowest terms). Then,

3
√

9 =
a

b
9b3 = a3.

Since the prime number 3 divides the left side of the equation, it must also
divide the right side. And since 3 is prime, it must divide one of the factors
of the expression a3; so there is an integer q so that a = 3q. Then:

9b3 = a3

9b3 = (3q)3

9b3 = 27q3

b3 = 3q3.

Since the prime number 3 divides the right side of the equation, it must also
divide the left side. And since 3 is prime, it must divide one of the factors of
the expression b3; so there is an integer q′ so that b = 3q′. But then a and b
have the common factor of 3 and so are not relatively prime. This contradicts
the fact that our original choice of a and b were relatively prime.

4. Prove that if x and n are relatively prime then [x]n has a multiplicative
inverse in Zn.

Solution. Since x and n are relatively prime, then my theorem there exist
integers p and q so that:

1 = np+ xq.

So we have

np = 1− xq
[xq]n = [1]n

[x]n[q]n = [1]n.
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So [x]n has a multiplicative inverse.

5. Prove that the multiplication operator ⊗ on Zn is well defined.[
Where [x]n ⊗ [y]n = [xy]n.

]
Solution. I’ll use the notation that x ∼ a means that n|(a − x); so x ∼ a
means [x]n = [a]n. Suppose that x ∼ a and y ∼ b. Then there are integers q
and p so that

a− x = nq

b− y = np

a = nq + x

b = np+ y.

Then to prove well defined we need to see if ab ∼ xy, so:

ab− xy = (nq + x)(np+ y)− xy
ab− xy = (n2qp+ npx+ nqy + xy)− xy

= (n2qp+ npx+ nqy)

= n(nqp+ px+ qy).

Therefore n|(ab− xy) and ab ∼ xy.

6. Let α be the following permutation on the set {1, 2, 3, 4, 5, 6}:

α = (1356).

a.) Calculate αn for all n > 0.

Solution.

α = (1356)

α2 = (1356)(1356) = (15)(36)

α3 = α · α2 = (1356)(15)(36) = (1653)

α4 = α · α3 = (1356)(1653) = (1)(2)(3)(4) = e
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b.) Argue that {an}n>0 is a subgroup of the group of permutations on
the set {1, 2, 3, 4, 5, 6}.

Solution. 1. Associativity follows since we have a subset of a group with the
same operation.

2. Closure follows since:

αn · αm = α(n+m) mod 4

3. The identity is in the set since

α4 = e

4. Each element has an inverse

α3 is the inverse of α

α2 is the inverse of α2

We can also see that it’s a subgroup from the multiplication table:

e = α4 α α2 α3

e e α α2 α3

α α α2 α3 e
α2 α2 α3 e α
α3 α3 e α α2

Extra Credit. Suppose that F : Zn → Z` so that F ([x]n) = [ax+ b]`.
Then, if `|an, then F is well defined .
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