\documentclass[12pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym, hyperref} \begin{document} \begin{center} \textbf{Logic: Propositional Calculus} \end{center} Undefined terms: Statements and statement variables; a set of logical values $\{T, F\}$; operators $\vee, \wedge, \sim $. \ Let $\mathbb{S}$ denote the collection of statements and assume in the following that each of $P, Q$ and $R$ is a statement. \ Axiom L0. To any statement $P$ a logical value can be assigned. Two sentences are logically equivalent if they have the same truth values for the same truth values of their clauses. \ Definition. The statement $P$ is said to be true if and only if it has truth value $T$; the statement $P$ is said to be false if and only if it has truth value $F$. \ Interpretations: The statement $P \vee Q$ is interpreted to mean ``$P$ or $Q$''; the statement $P \wedge Q$ is interpreted to mean ``$P$ and $Q$''; and the statement $ \sim P$ is interpreted to mean ``not $P$''. These interpretations should be consistent with your understanding of the grammar of our (English in our case) language. \ Axiom L1. \begin{center} \begin{tabular}{|c||c|} \hline $P$ & $\sim P$ \\ \hline $T$ & $F$ \\ $F$ & $T$\\ \hline \end{tabular} \end{center} \ Axiom L2. \begin{center} \begin{tabular}{|c|c||c|} \hline $P$ & $Q$ & $P \vee Q$ \\ \hline $T$ & $T$ & $T$ \\ $T$ & $F$ & $T$ \\ $F$ & $T$ & $T$ \\ $F$ & $F$ & $F$ \\ \hline \end{tabular} \end{center} \newpage Axiom L3. \begin{center} \begin{tabular}{|c|c||c|} \hline $P$ & $Q$ & $P \wedge Q$ \\ \hline $T$ & $T$ & $T$ \\ $T$ & $F$ & $F$ \\ $F$ & $T$ & $F$ \\ $F$ & $F$ & $F$ \\ \hline \end{tabular} \end{center} \ \ Theorem 1.1. If $P$ is a statement then: $$\begin{array}{ll} \mbox{i. } & P \vee P = P \\ \mbox{ii. } & P \wedge P = P \\ \mbox{iii.} & \sim (\sim P) = P \end{array}$$ \ Theorem 1.2. The operators $\vee$ and $\wedge$ are commutative: If each of $P$ and $Q$ is a statement then: $$\begin{array}{ll} \mbox{i. } & P \vee Q = Q \vee P \\ \mbox{ii. } & P \wedge Q = Q \wedge P \end{array}$$ \ Theorem 1.3. The operators $\vee$ and $\wedge$ are associative: If each of $P, Q$ and $R$ is a statement then: $$\begin{array}{ll} \mbox{i. } & P \vee (Q \vee R) = (P \vee Q) \vee R \\ \mbox{ii. } & P \wedge (Q \wedge R) = (P \wedge Q) \wedge R \end{array}$$ \ Theorem 1.4. Each of the operators $\vee$ and $\wedge$ distributes over the other: If each of $P, Q$ and $R$ is a statement then: $$\begin{array}{ll} \mbox{i. } & P \vee (Q \wedge R) = (P \vee Q) \wedge (P \vee R) \\ \mbox{ii. } & P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R) \end{array}$$ \ Theorem 1.5. [De Morgan's Law for logic.] If each of $P$ and $Q$ is a statement then: $$\begin{array}{ll} \mbox{i. } & \sim (P \vee Q) = (\sim P) \wedge (\sim Q) \\ \mbox{ii. } & \sim (P \wedge Q) = (\sim P) \vee (\sim Q) \end{array}$$ \ Definition. If each of $P$ and $Q$ is a statement then the statement $P \Rightarrow Q$ [read ``$P$ implies $Q$''] has the following truth values. \begin{center} \begin{tabular}{|c|c||c|} \hline $P$ & $Q$ & $P \Rightarrow Q$ \\ \hline $T$ & $T$ & $T$ \\ $T$ & $F$ & $F$ \\ $F$ & $T$ & $T$ \\ $F$ & $F$ & $T$ \\ \hline \end{tabular} \end{center} \ Theorem 1.6. If each of $P$ and $Q$ is a statement then the statement $P \Rightarrow Q$ is equivalent to the statement $(\sim P) \vee Q$. \end{document}