\documentclass[12pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym, hyperref} \begin{document} \begin{center} \textbf{Logic Exercises} \end{center} Notation: In the following, to simplify the notation, I sometimes use $P \vee \sim Q$ to mean $P \vee (\sim Q)$ and similarly with $\wedge$ and $\Rightarrow$; so $ \sim P \Rightarrow Q$ means $ (\sim P) \Rightarrow Q$. \ Exercise 1. Determine if the following are theorems. \qquad \qquad a. $ P \Rightarrow Q = (\sim Q \Rightarrow \sim P)$; \qquad \qquad b. $ (\sim P) \Rightarrow Q = P \vee Q$; \qquad \qquad c. $ \sim (P \vee \sim Q) = (\sim P) \vee (\sim Q)$; \qquad \qquad d. $ \sim (P \vee \sim Q) = (\sim P) \wedge (\sim Q)$; \qquad \qquad e. $ \sim (P \wedge \sim Q) = (\sim P) \vee (\sim Q)$; \qquad \qquad f. $ \sim (P \wedge \sim Q) = (\sim P) \wedge (\sim Q)$; \qquad \qquad g. $ (P \wedge Q) \vee R = P \wedge (Q \vee R)$; \qquad \qquad h. $ (P \vee Q) \wedge R = P \vee (Q \wedge R)$. \ Definition: A tautology is a statement that has truth value $T$ no matter what are the truth value of the clauses making up the statement. \ Exercise 2. Determine which of the following are tautologies. \qquad \qquad a. $ P \vee (\sim P)$; \qquad \qquad b. $ P \wedge (\sim P)$; \qquad \qquad c. $ \sim(P \vee (\sim P))$; \qquad \qquad d. $ P \Rightarrow P $; \qquad \qquad e. $ \sim(P \wedge (\sim P))$; \qquad \qquad f. $ (P \Rightarrow Q) \vee Q$; \qquad \qquad g. $ (P \Rightarrow Q) \vee (\sim Q)$; \qquad \qquad h. $ (P \Rightarrow Q) \vee P$; \qquad \qquad i. $ (P \Rightarrow Q) \vee (\sim P)$; \qquad \qquad j. $ (P \Rightarrow Q) \wedge Q$; \qquad \qquad k. $ (P \Rightarrow Q) \wedge (\sim Q)$; \qquad \qquad l. $ (Q \vee (P \vee R)) \vee (\sim R)$; \qquad \qquad m. $ (Q \wedge (P \wedge R)) \wedge (\sim R)$. \end{document}