
Induction.

In this section assume the notational convention that n ∈ N where N
denotes the positive integers. For some of these theorems we need to divide,
so we need multiplicative inverses; and you’ll find those in the AxiomsOfT-
heReals.pdf file. So you may use the axioms of the reals in this section plus
(obviously) the induction Axiom. You may assume all the usual algebraic as-
sumptions about the real numbers that you learned in High School. Because
of the similarity of the axioms of the reals to those of the integers, you should
be able to generalize the theorems about the integers to the real numbers and
verify all those rules you used in High School Mathematics courses. (And,
for example, the generalizations of Theorem 3.1 a-l.) There are two axioms
that I feel require special study, the induction axiom and the completeness
axiom. We will first concentrate on the induction axiom; you will likely need
it to prove the following theorems.

Theorem 4.1. If n ∈ N then,

n∑
i=1

i =
n(n+ 1)

2
.

[The numbers Tn =
∑n

i=1 i are called triangular numbers. (Why?)]

Theorem 4.2. If n ∈ N then,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Theorem 4.3. If n ∈ N then,

n∑
i=1

i3 =
[n(n+ 1)

2

]2
.

Exercise 4.1. The disadvantage of proving these identities using induction,
is that you need to have the formulas first. There are other ways to prove
these identities without using induction and that give use the needed formula.
The problem with the method is that you need the n-th formula to derive
the (n+1)-th. [I.e. the technique is inductive.] Following we outline the
technique.
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First prove the following lemma [this is called a “telescoping series”]:
Lemma:

n∑
i=1

(ai − ai−1) = an − a0.

Then observe that
∑n

i=1(i+1)3−i3 is a telescoping series and then use the
lemma to find the sum. Then expand each term of the sum by distributing
the summation symbol to obtain an equation and solve for

∑
i2 in terms of∑

i. Then use theorem 4.1 to obtain the formula of theorem 4.2.

Exercise 4.2. Repeat exercise 4.1 only replace 2 with 3, then with 4 and
5 and obtain the summation formula for

∑
i3 and

∑
i4. Verify the second

formula by induction for practice with induction arguments.

Definition: Let n ∈ N ∪ {0}, if n = 0 then we define 0! = 1, if n 6= 0 we
define (n+ 1)! = (n+ 1) · n!.

Exercise 4.3. Verify for each positive integer n:

n∑
i=1

i · i! = (n+ 1)!− 1.

Exercise 4.4.
a. Verify for each positive integer n:

1 +
n

2
≤

2n∑
i=1

1

i
≤ 1 + n.

[Note that the first inequality can be used to show that the harmonic series
diverges.]

b. Verify for each positive integer n, (2n)! < 22n(n!)2.

Definition. The Fibonacci numbers {Fn}∞i=1 are defined as follows:
F1 = 1.
F2 = 1.
For n ∈ Z, n > 2, Fn+1 = Fn + Fn−1.

Exercise 4.5. Calculate:
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a.
∑n

i=1 Fi,
b.
∑n

i=1 F2i−1.

Theorem 4.4. For each positive integer n:
a.
∑n

i=1 F
2
i = FnFn+1,

b. Fn+1Fn−1 − F 2
n = (−1)n,

c. If n > 2, then Fn+1Fn − Fn−1Fn−2 = F2n−1,
d.
∑2n−1

i=1 FiFi+1 = [F2n]2.

Exercise 4.6. Let n be a positive integer. Show that:
a. Fn ≤ 2n−1,
b. Fn ≤ 7

4

n−1
,

c. If β = 1+
√
5

2
, then Fn ≤ βn−1. [Note: β2 = β + 1.]

Theorem 4.5. Let α and β be the roots of x2 = x+ 1 with α < β, then:

Fn =
βn − αn

√
5

.

Exercise 4.7. Let M =

(
1 1
1 0

)
. Then Mn =

(
Fn+1 Fn

Fn Fn−1

)
.

Exercise 4.8. Verify:

n∑
i=1

2i− 1 = n2.
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