Groups

Definition (reminder) If $n \in \mathbb{N}$ then for $a, b \in \mathbb{Z}$ we define the equivalence relation \equiv_n on \mathbb{Z} as follows: $a \equiv_n b$ if and only if n|(b-a); \mathbb{Z}_n denotes the equivalence classes: $\mathbb{Z}_n = \{[x]_n | x \in \mathbb{Z}\}.$

Theorem 9.0. Define the operation $+_n$ and \cdot_n on \mathbb{Z}_n as follows:

$$[x]_n +_n [y]_n = [x+y]_n$$

$$[x]_n \cdot_n [y]_n = [x \cdot y]_n$$

Then the operations $+_n$ and \cdot_n are well defined.

Exercise. Consider the objects \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{Z}_5 , \mathbb{Z}_6 , \mathbb{Z}_7 with the operations $+_n$ and \cdot_n . Construct the addition and multiplication "tables". We will be making heavy use of these objects.

A group is a set of elements G with an operation \cdot that has the following properties:

1. Closure: if $x \in G$ and $y \in G$ then

$$x \cdot y \in G$$
;

2. Associativity: if $x, y, z \in G$ then

$$(x \cdot y) \cdot z = x \cdot (y \cdot z);$$

3. Identity: there is an element $e \in G$ so that for each $x \in G$:

$$e \cdot x = x = x \cdot e;$$

4. Inverses: for each $x \in G$ there is an element x^{-1} so that

$$x \cdot x^{-1} = e = x^{-1} \cdot x.$$

Caution!: Group operations are not necessarily commutative. Example: the set of all $n \times n$ matrices with non-zero determinants form a non-commutative group under matrix multiplication.

Theorem 9.1 [Uniqueness of the identity]. Suppose that G is a group with identity e. If \hat{e} is an element of G so that for all $x \in G$, $\hat{e}x = x = x\hat{e}$ then $e = \hat{e}$.

Theorem 9.2 [Uniqueness of the inverse]. Suppose that G is a group with identity e and $x \in G$. Then there is a unique element $x' \in G$ so that

 $x \cdot x' = x' \cdot x = e$. [Notation: the unique inverse of the element x is denoted by x^{-1} .]

Theorem 9.3. Suppose that G is a group and $x,y,z\in G$ are arbitrary elements. Then:

- 1. $(x^{-1})^{-1} = x$.
- 2. $(xy)^{-1} = y^{-1}x^{-1}$.
- 3. $(xy = xz) \Rightarrow (y = z)$.
- 4. $(yx = zx) \Rightarrow (y = z)$.

Example 9.1. Let $S = \{1, 2, 3, ..., n\}$ define S_n to be the collection of all 1-to-1 functions of S onto itself. Define the operation \circ between the elements $\alpha, \beta \in S_n$ by ordinary composition, thus for each $s \in S$ we have $(\alpha \circ \beta)(x) = \alpha(\beta(x))$. The set S_n with the operation \circ is a group.

Definition. A group G is said to be Abelian (or to be a commutative group) if and only if xy = yx for all $x, y \in G$.

Exercise 9.1. Construct the multiplication charts for the groups S_2 and S_3 . Are these groups Abelian?

Exercise 9.2. How many elements are in the groups S_4 and S_5 . Show that these groups are not Abelian and that each one of these has a "subgroup" equivalent to S_3 .

Definition. Suppose that G is a group with operation \cdot and $H \subset G$. Then H is said to be a subgroup of G if H with the operation \cdot is a group.

Exercise 9.3. We would like to determine when the following sets with the indicated operations are groups, assume n is an integer with n > 1:

$$\mathbb{Z}_n$$
 with operation $+ \mod n$
 $\mathbb{Z}_n - \{[0]\}$ with operation $\cdot \mod n$.

Look at examples for n = 6, 7, 10, 11. Which of these yield groups (it's not necessary to write out the whole table to answer this question.) (And why was 0 removed from the set?)

Theorem 9.4. Suppose that G is a group with operation \cdot and $H \subset G$ and it it true that for $h_1, h_2 \in H$ we have $h_1 \cdot h_2^{-1} \in H$. Then H is a subgroup of G.

Notational conventions. When working with the set \mathbb{Z}_n , then I will frequently omit the brackets $[x]_n$ when it is understood that we are working with \mathbb{Z}_n ; and operations $+_n$ and \cdot_n are often denoted by + mod n or \cdot mod n respectively. Thus following are equivalent ways of writing the same thing:

$$x \equiv_n y \iff x = y \mod n;$$

[3]₅ +₅ [4]₅ = [2]₅ \iff 3 + 4 = 2 mod 5.

Exercise 9.4. Find all the subgroups of $(\mathbb{Z}_6, + \mod 6)$ and of $(\mathbb{Z}_7 - \{[0]\}, \times \mod 7)$.

Definition. For \mathbb{Z}_n I want to be able to define the quantity $[b] = [a]^{[x]}$. Unlike the addition and multiplication operators this is not naturally well-defined. (In fact, as related in class, if x < 0 then a^x is not even an integer.) So we define it as follows: if whenever x, y > 0 we have that $x \equiv_n y \Rightarrow a^x \equiv a^y$ then we define $[b]_n = [a]_n^{[x]_n} = [a^x]_n$. When it is defined, we can let $[a^x]$ denote [b] for positive integers x.

Definition. Suppose that each of G and H are groups with operations \otimes and \boxtimes respectively and that $\varphi: G \to H$ is a function. Then φ is called a homomorphism if the following holds for all $x, y \in G$:

$$\varphi(x \otimes y) = \varphi(x) \boxtimes \varphi(y).$$

A homomorphism that is 1-to-1 is called an isomorphism.

Exercise 9.5 Determine which of the following functions are well-defined, if so are they homomorphisms: (Note that I am abbreviating the elements of the groups so that, for example in a: x means $[x]_6$, $\varphi(x)$ means $[\varphi(x)]_{12}$.) Are they isomorphisms?

a.
$$\varphi(\mathbb{Z}_{6}, +_{6}) \to (\mathbb{Z}_{12}, +_{12})$$
 with $\varphi(x) = 2x \mod 12$
b. $\varphi(\mathbb{Z}_{6}, +_{6}) \to (\mathbb{Z}_{10}, +_{10})$ with $\varphi(x) = 2x \mod 10$
c. $\varphi(\mathbb{Z}_{10}, +_{10}) \to (\mathbb{Z}_{5}, +_{5})$ with $\varphi(x) = 4x + 3 \mod 5$
d. $\varphi(\mathbb{Z}_{6}, +_{6}) \to (\mathbb{Z}_{7} - \{0\}, \cdot_{7})$ with $\varphi(x) = 3^{x} \mod 7$
e. $\varphi(\mathbb{Z}_{6}, +_{6}) \to (\mathbb{Z}_{7} - \{0\}, \cdot_{7})$ with $\varphi(x) = 2^{x} \mod 7$
f. $\varphi(\mathbb{Z}_{6}, +_{6}) \to (\mathbb{Z}_{7} - \{0\}, \cdot_{7})$ with $\varphi(x) = 5^{x} \mod 7$
g. $\varphi(\mathbb{Z}_{12}, +_{12}) \to (\mathbb{Z}_{6}, +_{6})$ with $\varphi(x) = x \mod 6$

Notation. If G is a group with identity element e and $g \in G$ then:

- i. q^0 denotes e;
- ii. q^1 denotes q;
- iii. for a positive integer n > 1, g^n is defined inductively as:

$$g^n = g^{n-1} \cdot g.$$

Theorem 9.5. Suppose that G is a group with the usual notation for the operation. Then:

a.
$$(g^{-1})^n = (g^n)^{-1}$$
 for $g \in G, n \in \mathbb{Z}^+$
b. $g^n \cdot g^m = g^{n+m}$ for $g \in G, n, m \in \mathbb{Z}^+$

Observe that condition (a.) allows us to define g^{-n} as the inverse of g^n .

Exercise 9.6. Prove that if G is a group and $g \in G$ then $H = \{g^n | n \in \mathbb{Z}\}$ is a subgroup of G. Note: H is called a *cyclic subgroup* of G; if there is an element of $g \in G$ so that the corresponding subgroup H is all of G then G is called a *cyclic* group.

Theorem 9.6. Suppose that G is a group and H is a subgroup of G. Define the relation \sim on G by $g \sim h$ if and only if $gh^{-1} \in H$. Then:

- a. \sim is an equivalence relation on G.
- b. Let $p \in G$ and define $Hp = \{hp|h \in H\}$; then the function $f: H \to Hp$ defined by f(h) = hp is 1-to-1 and onto. Definition: the set Hp is a called the *right coset* of H generated by p.
 - c. $[e]_{\sim} = H$.
 - d. The collection $\{Hg|g\in G\}$ is a partition of G.

Exercise 9.7. Consider $G = (\mathbb{Z}_{12}, +)$. Let $H = \{0, 3, 6, 9\}$.

- a. Show that H is a subgroup of G.
- b. Find all the cosets of H in G and denote this set by G/H.

[Note: If $x \in G$ then $H +_{12} [x]_{12} = \{ [h + x]_{12} | [h]_{12} \in H \}$ is the coset generated by x.]

- c. For $H +_{12}[x]_{12}$, $H +_{12}[y]_{12} \in G/H$ define $(H +_{12}[x]_{12}) \oplus (H +_{12}[y]_{12})$ by $(H +_{12}[x]_{12}) \oplus (H +_{12}[y]_{12}) = H +_{12}[x + y]_{12}$.
- d. Show that \oplus is well defined and construct the addition table for G/H with the operation \oplus .

Let $\varphi: G \to G/H$ be defined by $\varphi(x) = H +_{12} [x]_{12}$.

- e. Is φ well defined?
- f. Is φ 1-1 and/or onto?
- g. Is φ a homomorphism? an isomorphism?

Corollary to 9.6 [Lagrange's theorem]. If G is a group and H is a subgroup of G then |H| |G|.

Theorem 9.7. Suppose that G is a group and $g \in G$. Then the set $H = \{h | gh = hg\}$ is a subgroup of G.

Theorem 9.8. Suppose that G is a group. Let $H = \{h \in G | gh = hg \text{ for all } g \in G\}$ is a subgroup of G. (This is called the commutator subgroup of G and is the set all elements that commute with all the elements of G.)

Theorem 9.10. Suppose that G_1 and G_2 are groups and $\varphi: G_1 \to G_2$ is a homomorphism. Then $h(e_1) = e_2$ where e_1 is the identity element of G_1 and e_2 is the identity element of G_2 .

Exercise 9.8. Consider the group $(\mathbb{Z}_n, +_n)$ with the operation of addition mod n. Suppose that H is a subgroup of \mathbb{Z}_n . Let J be the collection of all cosets of H in \mathbb{Z}_n . Define the operation \oplus on J as follows:

$$(H +_n x) \oplus (H +_n y) = H +_n (x +_n y).$$

Define the operation \square as follows: if H_1 and H_2 are two cosets then

$$H_1 \boxplus H_2 = \{x +_n y | x \in H_1, y \in H_2\}.$$

Show that:

- a. \oplus is well defined.
- b. $H_1 \boxplus H_2 = H_1 \oplus H_2$.
- b. J with the operation \oplus is a group.
- c. J is abelian.
- d. $|H| \cdot |J| = n$.

Exercise 9.9. Prove that a group G is abelian if and only if $(xy)^2 = x^2y^2$ for all $x, y \in G$.