Cauchy Sequences

Let \mathbb{Q} denote the rational numbers and assume for the moment that all quantities mentioned below are elements of \mathbb{Q} . [Note: this is just a formal assumption since we have not yet formally constructed the real numbers.]

Definition. Suppose that $S = \{x_i\}_{i=1}^{\infty}$ is a sequence of numbers. Then $\{x_i\}_{i=1}^{\infty}$ is said to be a Cauchy sequence provided the following hold: If $\epsilon > 0$, then there exists an integer N_{ϵ} so that $|x_n - x_m| < \epsilon$ for all integers n and m greater than N_{ϵ} .

[Note: I use the notation N_{ϵ} to emphasize the fact that N_{ϵ} depends on ϵ ; but if N_{ϵ} is replaced with N, the definition is equivalent.]

Equivalently:

$$(\forall (\epsilon > 0))(\exists (N_{\epsilon} \in \mathbb{Z}))(\forall (n, m \in \mathbb{Z}(n, m > N_{\epsilon})))(|x_n - x_m| < \epsilon).$$

Exercise 10.1. Express the negation of what it means for $S = \{x_i\}_{i=1}^{\infty}$ to be a Cauchy sequence without using the negation \sim symbol.

Exercise 10.2. For each of the following sequences, determine if $S = \{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence:

a.
$$x_n = 2$$

b. $x_n = n^2$
c. $x_n = 3n - 10$
d. $x_n = \frac{1}{n}$
e. $x_n = \frac{1}{7n + 3}$
f. $x_n = (-1)^n \frac{1}{n}$
g. $x_n = (-1)^n \frac{1}{7n + 3}$
h. $x_n = \sum_{k=1}^n \frac{1}{2}$
i. $x_n = \sum_{k=1}^n \left(\frac{1}{2}\right)^k$
j. $x_n = \sum_{k=1}^n \frac{1}{k^2}$

Definition. A sequence $\{x_n\}_{n=1}^{\infty}$ is said to be bounded if there is a number B so that $|x_n| < B$ for all n.

Theorem 10.1 If $S = \{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then S is bounded.

Theorem 10.2 If each of $S_1 = \{x_n\}_{n=1}^{\infty}$ and $S_2 = \{y_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then $\{x_n + y_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Theorem 10.3 If B is a number and $S = \{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then $\{Bx_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

Definition. The sequence of rational numbers $S=\{r_i\}_{i=1}^{\infty}$ is said to converge to 0 means that if $\epsilon>0$ then there exists an integer N_{ϵ} so that if $n>N_{\epsilon}$ then

$$|r_n| < \epsilon$$
.

Theorem 10.3b. If $S = \{r_i\}_{i=1}^{\infty}$ is a sequence of rational numbers that converges to 0, the it is a Cauchy sequence.

Exercise 10.3. For the sequences of exercise 10.2, for those that are Cauchy sequences, determine if they converge to zero and prove your answer.

Let \hat{R} be the collection of all Cauchy sequences of rational numbers. Define the relation \sim on \hat{R} by $\{x_i\}_{i=1}^{\infty} \sim \{y_i\}_{i=1}^{\infty}$ if and only if $\{x_i - y_i\}_{i=1}^{\infty}$ converges to 0.

Theorem 10.4. The relation \sim defined on \hat{R} is an equivalence relation.

We will denote the collection of equivalence classes in \hat{R} as \mathbb{R} .

Before we can examine the multiplication operator, we'll need to prove the following:

Theorem 10.4b. If each of $S_1 = \{x_n\}_{n=1}^{\infty}$ and $S_2 = \{y_n\}_{n=1}^{\infty}$ is a Cauchy sequence, then $\{x_n \cdot y_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

[Hint: use theorem 10.1.]

Definition. We define the + and \cdot operators on $\mathbb R$ as follows:

$$\begin{bmatrix} \{x_i\}_{i=1}^{\infty} \end{bmatrix} + \left[\{y_i\}_{i=1}^{\infty} \right] = \left[\{x_i + y_i\}_{i=1}^{\infty} \right] \\
\left[\{x_i\}_{i=1}^{\infty} \right] \cdot \left[\{y_i\}_{i=1}^{\infty} \right] = \left[\{x_i \cdot y_i\}_{i=1}^{\infty} \right].$$

Theorem 10.5. The operation + on \mathbb{R} is well defined.

Theorem 10.6. The operation \cdot on \mathbb{R} is well defined.

Theorem 10.7. There is an copy $\theta(\mathbb{Q})$ of \mathbb{Q} so that θ is an isomorphism with respect to + and is an isomorphism of $\mathbb{Q} - \{0\}$ with respect to \cdot .