Math 3100, Project 02, Due Monday April 28

Definition. The sequence of rational numbers $S = \{r_i\}_{i=1}^{\infty}$ converges to 0 means that if $\epsilon > 0$ then there exists an integer N_{ϵ} so that if $n > N_{\epsilon}$ then

$$|r_n| < \epsilon$$
.

Let \hat{R} be the collection of all Cauchy sequences of rational numbers. Define the relation \sim on \hat{R} by $\{x_i\}_{i=1}^{\infty} \sim \{y_i\}_{i=1}^{\infty}$ if and only if $\{x_i - y_i\}_{i=1}^{\infty}$ converges to 0.

Denote the collection of equivalence classes in \hat{R} as \mathbb{R} .

Definition. We define the operation \leq on \mathbb{R} as follows:

$$\left[\{x_i\}_{i=1}^{\infty} \right] \leq \left[\{y_i\}_{i=1}^{\infty} \right]$$

if and only if for each $\epsilon>0$ there exists an integer N_{ϵ} such that if $n>N_{\epsilon}$ then

$$x_n - y_n < \epsilon$$
.

Prove the following theorems.

Theorem 1. The relation \leq is well defined.

Definition: if M is a subset of the \mathbb{R} then B is an upper bound of M means that $x \leq B$ for all $x \in M$; B is said to a least upper bound of M if B is an upper bound of M and no element less than B is an upper bound of M. [Note that $x \in \mathbb{R}$ means that $x = \left[\{x_i\}_{i=1}^{\infty}\right]$. Also note that we may assume the $B \in \theta(\mathbb{Q})$.]

Theorem 1.9. [An easier version of theorem 2.] If M is a subset of $\theta(\mathbb{Q})$ and there is an upper bound of M then there is a least upper bound of M.

Theorem 2. If M is a subset of \mathbb{R} and there is an upper bound of M then there is a least upper bound of M.

Homework exercises for Friday April 25. These are supposed to be helpful for working through the project. Use the definition of \leq given above to show the following.

A. If $\left[\{x_i\}_{i=1}^{\infty}\right] \leq \left[\{y_i\}_{i=1}^{\infty}\right]$ then there exists sequences $\{a_i\}_{i=1}^{\infty} \in \left[\{x_i\}_{i=1}^{\infty}\right]$ and $\{b_i\}_{i=1}^{\infty} \in \left[\{y_i\}_{i=1}^{\infty}\right]$ so that $a_i \leq b_i$ for all $i \in \mathbb{N}$.

B. If
$$\{a_i\}_{i=1}^{\infty} \in \left[\{x_i\}_{i=1}^{\infty}\right]$$
 then

$$\left[\{a_i\}_{i=1}^{\infty} \right] \leq \left[\{1+a_i\}_{i=1}^{\infty} \right].$$

C.

$$\left[\left\{ \frac{100}{n} \right\}_{n=1}^{\infty} \right] \leq \left[\left\{ 1 - \frac{1}{n} \right\}_{n=1}^{\infty} \right].$$