\documentclass[12pt]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym, hyperref} \begin{document} \begin{center} \textbf{Math 3100, Project 02, Due Monday April 28} \end{center} Definition. The sequence of rational numbers $S = \{r_i\}_{i=1}^\infty$ converges to $0$ means that if $\epsilon >0$ then there exists an integer $N_\epsilon$ so that if $n>N_\epsilon$ then \begin{eqnarray*} |r_n| & < & \epsilon. \end{eqnarray*} \ Let $\hat R$ be the collection of all Cauchy sequences of rational numbers. Define the relation $\sim$ on $\hat R$ by $\{x_i\}_{i=1}^\infty \sim \{y_i\}_{i=1}^\infty$ if and only if $\{x_i - y_i\}_{i=1}^\infty$ converges to $0$. \ Denote the collection of equivalence classes in $\hat R$ as $\mathbb{R}$. \ Definition. We define the operation $\leq$ on $\mathbb{R}$ as follows: \begin{eqnarray*} \Big[\{x_i\}_{i=1}^\infty\Big] & \leq & \Big[\{y_i\}_{i=1}^\infty\Big] \end{eqnarray*} if and only if for each $\epsilon >0$ there exists an integer $N_\epsilon$ such that if $n > N_\epsilon$ then \begin{eqnarray*} x_n - y_n & < & \epsilon . \end{eqnarray*} \ Prove the following theorems. \ Theorem 1. The relation $\leq$ is well defined. \ Definition: if $M$ is a subset of the $\mathbb{R}$ then $B$ is an upper bound of $M$ means that $x \le B$ for all $x \in M$; $B$ is said to a least upper bound of $M$ if $B$ is an upper bound of $M$ and no element less than $B$ is an upper bound of $M$. [Note that $x \in \mathbb{R}$ means that $x=\ \Big[ \{x_i\}_{i=1}^\infty \Big]$. Also note that we may assume the $B \in \theta(\mathbb{Q})$.] \ Theorem 1.9. [An easier version of theorem 2.] If $M$ is a subset of $\theta(\mathbb{Q})$ and there is an upper bound of $M$ then there is a least upper bound of $M$. \ Theorem 2. If $M$ is a subset of $\mathbb{R}$ and there is an upper bound of $M$ then there is a least upper bound of $M$. \ Homework exercises for Friday April 25. These are supposed to be helpful for working through the project. Use the definition of $\leq$ given above to show the following. \ A. If $\Big[\{x_i\}_{i=1}^\infty\Big] \leq \Big[\{y_i\}_{i=1}^\infty\Big]$ then there exists sequences $\{a_i\}_{i=1}^\infty \in \Big[\{x_i\}_{i=1}^\infty\Big]$ and $\{b_i\}_{i=1}^\infty \in \Big[\{y_i\}_{i=1}^\infty\Big]$ so that $a_i \leq b_i$ for all $i \in \mathbb{N}$. \ B. If $\{a_i\}_{i=1}^\infty \in \Big[\{x_i\}_{i=1}^\infty\Big]$ then \begin{eqnarray*} \Big[\{a_i\}_{i=1}^\infty\Big] & \leq & \Big[\{1 + a_i\}_{i=1}^\infty\Big]. \end{eqnarray*} \ C. \begin{eqnarray*} \Big[\Big \{\frac{100}{n} \Big \}_{n=1}^\infty\Big] & \leq & \Big[ \Big\{1 - \frac 1n \Big \}_{n=1}^\infty\Big]. \end{eqnarray*} \end{document}