Project on constructing the rational numbers \mathbb{Q} .

Define the set \mathbb{Q} of pairs of integers as follows: $\mathbb{Q} = \mathbb{Z} \times (\mathbb{Z} - \{0\})$. Equivalently $(x,y) \in \mathbb{Q}$ if and only if $x,y \in \mathbb{Z}$ and $y \neq 0$. We define the following relation \sim on \mathbb{Q}

$$(a,b) \sim (c,d)$$
 if and only if $ad = bc$.

Part I. Note that you may only use the axioms of the integers and the theorems that we have derived from them to do the following problems. Part I is due Friday Mar. 21.

Problem 1. Prove that \sim is an equivalence relation.

[Note that now we can talk about equivalence classes.] Define:

$$[(a,b)] = \{(c,d)|(c,d) \sim (a,b)\}.$$

Problem 2. [Note that the operations on the right in the following are ordinary multiplication and addition on the integers.]

a.) Consider the operation \cdot_{\sim} defined by

$$[(a,b)] \cdot_{\sim} [(c,d)] = [(ac,bd)].$$

Show that \cdot_{\sim} is well defined.

Note, this is with respect to the equivalence relation \sim : In other words: show that if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ then $(ac,bd) \sim (a'c',b'd')$. Equivalently, show that if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ then [(ac,bd)] = [(a'c',b'd')]

b.) Consider the operation \oplus defined by

$$[(a,b)] \oplus [(c,d)] = [(a+c,b+d)].$$

Show that \oplus is not well defined.

In other words: show that there exist $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ that $(a+c,b+d) \sim (a'+c',b'=d')$. Equivalently, show that there exist $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ so that $[(ac,bd)] \neq [(a'c',b'd')]$.

c.) Consider the operation $+_{\sim}$ defined by

$$[(a,b)] +_{\sim} [(c,d)] = [(ad+bc,bd)].$$

Show that $+_{\sim}$ is well defined.

In other words: show that if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ then $(ad+bc,bd) \sim (a'd'+b'c',b'd')$. Equivalently, show that if $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$ then [(ad+bc,bd)] = [(a'd'+b'c',b'd')].

[Big hint: since we are constructing the rationals from the axioms of the integers, you should be aware that we are constructing the usual set of fractions in the form $\frac{n}{m}$. Our goal is to prove from the axioms that our \mathbb{Q} is equivalent to our usual fractions. So there has to be a one-to-one relationship between \mathbb{Q} and our familiar fractions. Use that to help answer the problems - then use our knowledge of the integers to prove your responses to the problems posed.]

Project on the rational numbers II.

Part II. Due Monday Mar. 24.

Define
$$\mathbb{Q}_{\sim} = \{ [(a,b)] | (a,b) \in \mathbb{Q} \}.$$

 \mathbb{Q} so that we have

Problem 3a. Show that there is an "additive" identity in \mathbb{Q}_{\sim} for the operation $+_{\sim}$.

In other words, show that there exists $(e_1, e_2) \in \mathbb{Q}$ so that for an arbitrary $(a, b) \in \mathbb{Q}$ we have

$$[(e_1, e_2)] +_{\sim} [(a, b)] = [(a, b)].$$

Note that since (it is easy to see that) the operation is commutative, it's not necessary so show that the identity that we select is both a left identity and a right identity (and similarly below for inverses).

Problem 3b. Show that there is an additive inverse for each element of \mathbb{Q} . In other words, show that for an arbitrary $(a,b) \in \mathbb{Q}$, there exists $(c,d) \in \mathbb{Q}$

$$[(c,d)] +_{\sim} [(a,b)] = [(e_1,e_2)].$$

Problem 4a. Show that there is a "multiplicative" identity in \mathbb{Q}_{\sim} for the operation \cdot_{\sim} .

In other words, show that there exists $(\ell_1, \ell_2) \in \mathbb{Q}$ so that if $(a, b) \in \mathbb{Q}$, we have

$$[(\ell_1, \ell_2)] \cdot_{\sim} [(a, b)] = [(a, b)].$$

Problem 4b. Show that there is a multiplicative inverse for each element of \mathbb{Q}_{\sim} except for the additive identity.

Problem 4c. Show that the additive identity does not have a multiplicative inverse.

I.e.: show that $[(e_1, e_2)]$ does not have a multiplicative inverse.

Problem 5. Show that there is an isomorphic copy of the integers in \mathbb{Q}_{\sim} which is an isomorphism with respect to both addition $(+_{\sim})$ and multiplication (\cdot_{\sim}) operations.

For future needs, lets call the isomorphism θ .

Note that once we's done our proofs for problem 5, then we may stop subscripting the relationships $+_{\sim}$ and \cdot_{\sim} since, where appropriate, they are isomorphic to the operations on the integers.

Project on the rational numbers III.

We need to show that the classes from the equivalence relation \sim on \mathbb{Q} satisfy the same axioms as the integers with regard to the operations + and \cdot (note that I've omitted the subscript) of the operations on the equivalence classes. We will prove a selected few axioms.

Problem 6. Show that the operation + is associative. [Note that by +, I mean $+_{\sim}$ and similarly with \cdot ..]

Problem 7. Show that the distribution axiom holds:

$$[(x,y)] \cdot ([(a,b)]) + [(c,d)]) = [(x,y)] \cdot [(a,b)] + [(x,y)] \cdot [(c,d)].$$

Problem 8. Define the inequality $<_{\sim}$ on the equivalence classes of \mathbb{Q} (i.e. on \mathbb{Q}_{\sim}) so that the following hold.

- a. Define $<_{\sim}$ so that if $\theta: \mathbb{Z} \to \mathbb{Q}_{\sim}$ is the isomorphism defined in part 2 of the project, then x < y if and only if $\theta(x) <_{\sim} \theta(y)$.
 - b. Prove that $<_{\sim}$ is well-defined.
 - c. Prove that the relation $<_\sim$ satisfies axioms D4 and D5.

[Hint: show that for each $(a,b) \in \mathbb{Q}$ there exist $(a',b') \in \mathbb{Q}$ so that b' > 0 and $(a,b) \sim (a',b')$. And use the big hint of part I.]