
Exercise 55.22 g: Show that 3
√

24 irrational.

Proof. We suppose that the statement is false and assume that there are a
pair of integers so that

3
√

24 =
a

b
.

Then from the fundamental theorem of arithmetic we can represent a and b
as unique products of primes so that

a = pn1
1 pn2

2 . . . pnk
k

b = qr11 qr22 . . . qr``

and where for each i = 1, 2, . . . , k, pi is a prime number with pi < pi+1 for
i = 1, 2, . . . , k − 1 and similarly where for each i = 1, 2, . . . , `, qi is a prime
number with qi < qi+1 for i = 1, 2, . . . , k − 1, and where the exponents are
unique. So in this partiular case we can assume that

a = 2n3mP

b = 2r3sQ

where P and Q are the product of primes no one of which is divisible by 2
or by 3. Observe that

a3 = 23n33mP 3

b3 = 23r33sQ3.

So we have

3
√

24 =
a

b
3
√

24b = a

24b3 = a3

23 · 3 · 23r33sQ3 = 23n33mP 3

23r+333s+1Q3 = 23n33mP 3.

Then by the uniqueness of the exponents of the prime number 3 we must
have

3s + 1 = 3m

1 = 3m− 3s

1 = 3(m− s)
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this implies that 1 is divisible by 3; but that contradicts the theorem that says
that if a and b are positive and a|b, then a ≤ b. Since our assumption gives
us a contradiction it follows that the assumption is false and the theorem is
true.

[Note that the argument is valid in the case that one of n,m, r, s is zero.]

Theorem. For each positive integer n:

n∑
i=1

1

i(i + 1)
=

n

n + 1
.

Proof.

1∑
i=1

1

i(i + 1)
=

1

1(1 + 1)
=

1

2
;

1

1 + 1
=

1

2
.

Therefore the statement is true for n = 1. We proceed by induction. The
induction hypothesis is that for each positive integer n we have

n∑
i=1

1

i(i + 1)
=

n

n + 1
.

Therefore:
n+1∑
i=1

1

i(i + 1)
=

n∑
i=1

1

i(i + 1)
+

1

(n + 1)(n + 2)

=
n

n + 1
+

1

(n + 1)(n + 2)

=
n(n + 2) + 1

(n + 1)(n + 2)

=
n2 + 2n + 1

(n + 1)(n + 2)

=
(n + 1)2

(n + 1)(n + 2)

=
n + 1

n + 2
.
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Where the second step follows from the induction hypothesis. And the re-
maining steps complete the proof by induction.

Theorem. If x is an integer then x2 ≥ 0.

Proof. By axiom D1 there are three cases: (1) x = 0, (2) 0 < x, (3) x < 0:
Case 1. x = 0:

0 · 0 = 0 by Theorem
0 · 0 ≥ 0 Assumption of case (1)

Case 2. 0 < x:

0 < x Assumption of case (2)
0 · x < x · x Axiom D5

0 < x2 Theorem, definition of notation
x2 > 0 notation
∴ x2 ≥ 0

Case 3. x < 0:

x < 0 Assumption of case (3)
x +−x < 0 +−x Axiom D4

0 < −x additive inverse, additive identity
(−x) · (−x) > 0 case 2 above
−− x · x = −− x2 Theorem and notation
−− x2 = x2 Theorem
x2 > 0 from steps 4, 5 and 6 of case 3
∴ x2 ≥ 0.
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