Exercise 55.22 g: Show that $\sqrt[3]{24}$ irrational.

Proof. We suppose that the statement is false and assume that there are a pair of integers so that

 $\sqrt[3]{24} = \frac{a}{b}.$

Then from the fundamental theorem of arithmetic we can represent a and b as unique products of primes so that

$$a = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$$

$$b = q_1^{r_1} q_2^{r_2} \dots q_\ell^{r_\ell}$$

and where for each $i=1,2,\ldots,k$, p_i is a prime number with $p_i < p_{i+1}$ for $i=1,2,\ldots,k-1$ and similarly where for each $i=1,2,\ldots,\ell$, q_i is a prime number with $q_i < q_{i+1}$ for $i=1,2,\ldots,k-1$, and where the exponents are unique. So in this partial case we can assume that

$$a = 2^n 3^m P$$
$$b = 2^r 3^s Q$$

where P and Q are the product of primes no one of which is divisible by 2 or by 3. Observe that

$$a^{3} = 2^{3n}3^{3m}P^{3}$$
$$b^{3} = 2^{3r}3^{3s}Q^{3}.$$

So we have

$$\sqrt[3]{24} = \frac{a}{b}$$

$$\sqrt[3]{24}b = a$$

$$24b^3 = a^3$$

$$2^3 \cdot 3 \cdot 2^{3r}3^{3s}Q^3 = 2^{3n}3^{3m}P^3$$

$$2^{3r+3}3^{3s+1}Q^3 = 2^{3n}3^{3m}P^3.$$

Then by the uniqueness of the exponents of the prime number 3 we must have

$$3s + 1 = 3m$$

$$1 = 3m - 3s$$

$$1 = 3(m - s)$$

this implies that 1 is divisible by 3; but that contradicts the theorem that says that if a and b are positive and a|b, then $a \leq b$. Since our assumption gives us a contradiction it follows that the assumption is false and the theorem is true.

[Note that the argument is valid in the case that one of n, m, r, s is zero.]

Theorem. For each positive integer n:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

Proof.

$$\sum_{i=1}^{1} \frac{1}{i(i+1)} = \frac{1}{1(1+1)} = \frac{1}{2};$$
$$\frac{1}{1+1} = \frac{1}{2}.$$

Therefore the statement is true for n = 1. We proceed by induction. The induction hypothesis is that for each positive integer n we have

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

Therefore:

$$\sum_{i=1}^{n+1} \frac{1}{i(i+1)} = \sum_{i=1}^{n} \frac{1}{i(i+1)} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n(n+2)+1}{(n+1)(n+2)}$$

$$= \frac{n^2+2n+1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)}$$

$$= \frac{n+1}{n+2}.$$

Where the second step follows from the induction hypothesis. And the remaining steps complete the proof by induction. \Box

Theorem. If x is an integer then $x^2 \ge 0$.

Proof. By axiom D1 there are three cases: (1) x = 0, (2) 0 < x, (3) x < 0: Case 1. x = 0:

$$0 \cdot 0 = 0$$
 by Theorem $0 \cdot 0 \ge 0$ Assumption of case (1)

Case 2. 0 < x:

$$0 < x$$
 Assumption of case (2)
 $0 \cdot x < x \cdot x$ Axiom D5
 $0 < x^2$ Theorem, definition of notation
 $x^2 > 0$ notation
 $\therefore x^2 \ge 0$

Case 3. x < 0:

$$x < 0$$
 Assumption of case (3)
 $x + -x < 0 + -x$ Axiom D4
 $0 < -x$ additive inverse, additive identity
 $(-x) \cdot (-x) > 0$ case 2 above
 $--x \cdot x = --x^2$ Theorem and notation
 $--x^2 = x^2$ Theorem
 $x^2 > 0$ from steps 4, 5 and 6 of case 3
 $\therefore x^2 \ge 0$.