\documentclass[12pt,std]{article} \usepackage{amsmath,amsthm,amsfonts,amssymb,latexsym, hyperref} \begin{document} \begin{center} \textbf{Square Symmetries Multiplication Table.} \end{center} \ The set of ``symmetries'' of the square is listed below: \ \begin{eqnarray*} I: \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \rightarrow \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] & & R: \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \rightarrow \left [ \begin{array}{cc} 4 & 1 \\ 3 & 2 \end{array} \right ] \\ \\ R^2: \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \rightarrow \left [ \begin{array}{cc} 3 & 4 \\ 2 & 1 \end{array} \right ] & & R^3: \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \rightarrow \left [ \begin{array}{cc} 2 & 3 \\ 1 & 4 \end{array} \right ] \\ \\ V: \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \rightarrow \left [ \begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array} \right ] & & H: \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \rightarrow \left [ \begin{array}{cc} 4 & 3 \\ 1 & 2 \end{array} \right ] \\ \\ U: \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \rightarrow \left [ \begin{array}{cc} 3 & 2 \\ 4 & 1 \end{array} \right ] & & L: \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \rightarrow \left [ \begin{array}{cc} 1 & 4 \\ 2 & 3 \end{array} \right ] \\ \end{eqnarray*} \ To multiply two of them together you operate with one and then the other. You should convince yourself that this operation is not commutative; so it make a difference the order in which the operations are done. I'll base my notation on the way we are used to thinking about functions. So $R$ times $V$ means you operate first by $V$ and then by $R$; in other words, as follows: $$RV \left ( \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \right ) = R \Big( V \left ( \left [ \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array} \right ] \right ) \Big) = R \left ( \left [ \begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array} \right ] \right ) = \left [ \begin{array}{cc} 3 & 2 \\ 4 & 1 \end{array} \right ]. $$ So $RV = U$. \ Exercise 1. Use this information to construct the multiplication table for the symmetries of the square. [Hint: it's a group; so you can use the group properties to fill out the table more quickly (e.g it has an identity and inverses and it's a sudoku solution).] \ Exercise 2. Show that the triangle symmetries is isomorphic to $S_3$. \end{document}