Logic: Propositional Calculus

Undefined terms: Statements and statement variables; a set of logical values $\{T, F\}$; operators \lor, \land, \sim .

Let S denote the collection of statements and assume in the following that each of P, Q and R is a statement.

Axiom L0. To any statement P a logical value can be assigned. Two sentences are logically equivalent if they have the same truth values for the same truth values of their clauses.

Definition. The statement P is said to be true if and only if it has truth value T; the statement P is said to be false if and only if it has truth value F.

Interpretations: The statement $P \lor Q$ is interpreted to mean "P or Q"; the statement $P \land Q$ is interpreted to mean "P and Q"; and the statement $\sim P$ is interpreted to mean "not P". These interpretations should be consistent with your understanding of the grammar of our (English in our case) language.

Axiom L1.

P	$\sim P$
T	F
F	Т

Axiom L2.

P	Q	$P \lor Q$
T	T	T
T	F	T
F	T	T
F	F	F

Axiom L3.

P	Q	$P \wedge Q$
T	T	Т
T	F	F
F	T	F
F	F	F

Theorem 1.1. If P is a statement then:

i.
$$P \lor P = P$$

ii. $P \land P = P$
iii. $\sim (\sim P) = P$

Theorem 1.2. The operators \lor and \land are commutative: If each of P and Q is a statement then:

i.
$$P \lor Q = Q \lor P$$

ii. $P \land Q = Q \land P$

Theorem 1.3. The operators \lor and \land are associative: If each of P, Q and R is a statement then:

i.
$$P \lor (Q \lor R) = (P \lor Q) \lor R$$

ii. $P \land (Q \land R) = (P \land Q) \land R$

Theorem 1.4. Each of the operators \vee and \wedge distributes over the other: If each of P, Q and R is a statement then:

i.
$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

ii. $P \land (Q \lor R) = (P \land Q) \lor (P \land R)$

Theorem 1.5. [De Morgan's Law for logic.] If each of P and Q is a statement then:

i.
$$\sim (P \lor Q) = (\sim P) \land (\sim Q)$$

ii. $\sim (P \land Q) = (\sim P) \lor (\sim Q)$

Definition. If each of P and Q is a statement then the statement $P \Rightarrow Q$ [read "P implies Q"] has the following truth values.

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Theorem 1.6. If each of P and Q is a statement then the statement $P \Rightarrow Q$ is equivalent to the statement $(\sim P) \lor Q$.