Theorems about the integers.

For these theorems you must use only the Axioms of the integers and the rules of logic; these are stated in the file AxiomsOfTheIntegers.

Definition: If $a \in \mathbb{R}$ then: $a^{0}=1 ; a^{1}=a ; a^{n+1}=a^{n} \cdot a$.
Definition: $2=1+1$. [Note that this is the definition of the symbol " 2 "; the symbols $3,4, \ldots$ are defined inductively similarly.]

Theorem 2.1. Suppose that each of a, b and c is an integer.
a. $(a+b) \cdot c=a \cdot c+b \cdot c$.
b. $a+(b+c)=(c+a)+b$.
c. $a \cdot(b \cdot c)=(c \cdot a) \cdot b$.

Notational convention: By theorems similar to the above and the associativity and commutivity axioms, $a+b+c$ can now be defined as any of the following: $(a+b)+c, a+(b+c),(a+c)+b, \ldots$ The quantity $a \cdot b \cdot c$ can be similarly defined.

Notational convention: $a b$ means $a \cdot b$.
d. The additive and multiplicative identities are both unique. (i.e. no number other than 0 is the additive identity and similarly for the multiplicative identity.)
e. $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
f. $0 \cdot a=0$.
g. If $a+b=0$ and $a+c=0$ then $b=c$.
h. $(-1) \cdot a=-a$. [Hint: use f and g .]
i. $-(-a)=a$.
j. $(-a) \cdot b=-(a b)=a \cdot(-b)$.
k. $(-a) \cdot(-b)=a \cdot b$.
l. $-0=0$.

Theorem 2.2. Suppose that each of a, b and c is an integer.
a. If $a<b$ and $0>c$ then $a c>b c$.
b. If $a \neq 0$, then $a^{2}>0$.
c. If $a b=0$ then either $a=0$ or $b=0$.
d. If $a>0$ then $-a<0$.

Theorem 2.3. There is no integer between 0 and 1.
Definition. If S is a subset of \mathbb{Z} then ℓ is the least element of S means $\ell \in S$ and if $x \in S$ then $\ell \leq x$.

Theorem 2.4. If $S \subset \mathbb{N}$ and S is non-empty then S has a least element.
Note: From this point on you may assume all the algebraic facts about the integers that you have learned in your previous mathematics classes.

Divisibility.

Note: In this section you may not use fractions since they (and for that matter real numbers) have not yet been defined.

Definition. If a and b are integers then a is said to divide b if and only if there is an integer q so that $b=a q$. The standard notation is: $a \mid b$.

Theorem 2.5. If each of a, b, and c is an integer so that $a \mid b$ and $b \mid c$, then $a \mid c$.

Theorem 2.6. If each of a, b and c is an integer so that $a \mid b$ and $a \mid c$ then for arbitrary integers x and $y, a \mid(x b+y c)$.

Theorem 2.7. [The division algorithm.] If each of a and b is an integer with $0<b$ then there exist unique integers q and r with $0 \leq r<b$ so that:

$$
a=b q+r .
$$

In the following exercises and theorems assume, as usual, that the quantities are appropriately defined.

Exercise 2.1. Find integers a, b, and c so that $a \mid b c$ but $a \nmid b$ and $a \nmid c$.

Theorem 2.8. If $c \neq 0$ then $a \mid b$ iff $a c \mid b c$.
Theorem 2.9. If $a>0, b>0$ and $a \mid b$ then $a \leq b$.

