
Induction.

In this section assume the notational convention that n ∈ N where N
denotes the positive integers. For some of these theorems we need to divide,
so we need multiplicative inverses; and you’ll find those in the AxiomsOfT-
heReals.pdf file. So you may use the axioms of the reals in this section plus
(obviously) the induction Axiom. You may assume all the usual algebraic as-
sumptions about the real numbers that you learned in High School. Because
of the similarity of the axioms of the reals to those of the integers, you should
be able to generalize the theorems about the integers to the real numbers and
verify all those rules you used in High School Mathematics courses. There
are two axioms that I feel require special study, the induction axiom and the
completeness axiom. We will first concentrate on the induction axiom; you
will likely need it to prove the following theorems.

Theorem 3.1. If n ∈ N then,

n∑
i=1

i =
n(n+ 1)

2
.

[The numbers Tn =
∑n

i=1 i are called triangular numbers. (Why?)]

Theorem 3.2. If n ∈ N then,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

Theorem 3.3. If n ∈ N then,

n∑
i=1

i3 =
[n(n+ 1)

2

]2
.

Exercise 3.1. First prove the following lemma [this is called a “telescoping
series”]:

Lemma:
n∑

i=1

(ai − ai−1) = an − a0.
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Then observe that
∑n

i=1(i+1)3− i3 is a telescoping series and use use the
lemma to find the sum. Then expand each term of the sum by distributing
the summation symbol to obtain an equation and solve for

∑
i2 in terms of∑

i. Then use theorem 3.1 to obtain the formula of theorem 3.2.

Exercise 3.2. Repeat exercise 3.1 only replace 2 with 3, then with 4 and
5 and obtain the summation formula for

∑
i3 and

∑
i4. Verify the second

formula by induction for practice with induction arguments.

Definition: Let n ∈ N ∪ {0}, if n = 0 then we define 0! = 1, if n 6= 0 we
define (n+ 1)! = (n+ 1) · n!.

Exercise 3.3. Verify for each positive integer n:

n∑
i=1

i · i! = (n+ 1)!− 1.

Exercise 3.4.
a. Verify for each positive integer n:

1 +
n

2
≤

2n∑
i=1

1

i
≤ 1 + n.

[Note that the first inequality can be used to show that the harmonic series
diverges.]

b. Verify for each positive integer n, (2n)! < 22n(n!)2.

Theorem 3.4. If n is a positive integer and x and y are real numbers then
x− y is a factor of xn − yn.

Definition. The Fibonacci numbers {Fn}∞i=1 are defined as follows:
F1 = 1.
F2 = 1.
For n ∈ Z, n > 2, Fn+1 = Fn + Fn−1.

Exercise 3.5. Calculate:
a.
∑n

i=1 Fi,
b.
∑n

i=1 F2i−1.
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Theorem 3.5. For each positive integer n:
a.
∑n

i=1 F
2
i = FnFn+1,

b. Fn+1Fn−1 − F 2
n = (−1)n,

c. If n > 2, then Fn+1Fn − Fn−1Fn−2 = F2n−1,
d.
∑2n−1

i=1 FiFi+1 = [F2n]2.

Exercise 3.6. Let n be a positive integer. Show that:
a. Fn ≤ 2n−1,
b. Fn ≤ 7

4

n−1
,

c. If β = 1+
√
5

2
, then Fn ≤ βn−1. [Note: β2 = β + 1.]

Theorem 3.6. Let α and β be the roots of x2 = x+ 1 with α < β, then:

Fn =
βn − αn

√
5

.

Exercise 3.7. Let M =

(
1 1
1 0

)
. Then Mn =

(
Fn+1 Fn

Fn Fn−1

)
.

Exercise 3.8. Verify:

n∑
i=1

2i− 1 = n2.
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