
Prime Numbers and the Fundamental Theorem of Arithmetic.

For these theorems you must use only the Axioms of the integers and the
theorems that are consequences of them (except for exercises 4.14 and 4.22
which are applications of the theory of integers to the reals.)

Exercise 4.1. If a|b then an|bn for each positive integer n.

Theorem 4.1. Suppose that each of a and b is a positive number. If a|b
and b|a then a = b.

Exercise 4.2. Show that if a is an integer then, 3|(a3 − a).

Exercise 4.3. Show that 6|a(a+ 1)(a+ 2) for any integer a.

Exercise 4.4. Show that 5|(a5 − a) for every positive integer a.

Exercise 4.5. The sum of the cubes of three successive integers is divisible
by 9.

Exercise 4.6. Show that if m > 1 then Fn+m = FmFn+1 + Fm−1Fn.

Exercise 4.7. Show that if n|m then Fn|Fm. [Hint: use exercise 4.6.]

Prime Numbers.

Definition. Suppose that n is a positive integer. If n is only divisible by
one positive integer then n is called a unit ; if there are only two positive
integers that divide n then n is called a prime number; if n is divisible by
three positive integers then n is called a composite number.

Observation. The positive integer p is a prime number iff it is not equal
to 1 and it is divisible only by itself and 1.

Theorem 4.2. If n > 1 is a positive integer then there exists a prime
number p so that p|n.
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Theorem 4.3. The set of prime numbers in infinite.

Historical note, The Prime Number Theorem:
If x is a positive number then let π(x) denotes the number of primes less

than or equal to x. Then:

lim
n→∞

π(n)
n

ln(n)

= 1.

This is an important theorem in number theory and uses techniques that
will not be covered in this course. It tells us something about the density of
prime numbers.

Theorem 4.5. If n is a positive integer then at some point in the number
system, there exists n consecutive composite integers.

Open problem: Goldbach’s Conjecture: If n > 2 is an even positive
integer then n is the sum of two primes.

Exercise 4.9. Determine the smallest integer n for which the quantity
n3 + 1 is prime.

Exercise 4.10. Show that if p is prime, then one of p + 2 or p + 4 is not
prime.

Exercise 4.11. Show that x2 − x + 41 is prime for all positive integers
x < 41. [Don’t do this by hand, use a spreadsheet or something.] Show that
for x = 41 this polynomial does not produce a prime.

Theorem 4.6. [Generalization of exercise 4.11.] Show that if P (x) is a
polynomial with integer coefficients then there is a positive integer n so that
P (n) is a composite number.

Exercise 4.12. Show that if an − 1 is prime then a = 2 and n is prime.

Exercise 4.13. Suppose that N is an integer and A is a set of primes less
than N and B is the set of primes less than N that are not in A. Then∏

a∈A a+
∏

b∈B b is not divisible by a prime less than N .
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Exercise 4.14. Suppose that p is the smallest prime factor of the integer
n and that 3

√
n < p then either n or n

p
is prime.

Exercise 4.15. Show that every integer greater than 11 is the sum of two
composite numbers.

Exercise 4.16. Suppose that n is a positive integer. Does it follow that(
n
r

)
is divisible by n? What if n is prime?

Theorem 4.7. The set S = {4k + 3|k ∈ Z+} contains infinitely many
primes.

[Hint: note that if a and b are both in the form 4n+ 1 then so is ab.]

Definition. If each of a and b is an integer then the greatest common
divisor of a and b is the largest positive integer that divides both a and b.

The common notation for the greatest common divisor d of a and b is:
d = (a, b) or d = gcd(a, b). We will use the latter, though you should be
aware that the former is also frequently used.

Definition. If each of a and b is an integer then a and b are said to be
relatively prime iff gcd(a, b) = 1.

Definition. The greatest common divisor for a set of numbers {ai}ni=1 is
similarly defined: gcd({ai}ni=1) is the largest positive integer that divides all
the elements of the set {ai}ni=1.

Example: Find three integers so that gcd(a, b, c) = 1 but that are pairwise
not relatively prime.

Theorem 4.8. Suppose that each of a and b is a positive integer and
d = gcd(a, b). Then there exists integers x and y so that:

d = ax+ by.
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Theorem 4.9. Suppose that each of a and b is an integer and at least one
of them is not 0. Let S = {na + mb|n ∈ Z,m ∈ Z, 0 < na + mb}. Then
gcd(a, b) is the least element of the set S.

Exercise 4.17. Find the gcd of the following pairs:
a. gcd(a, a2) =?,
b. gcd(a, a+ 1) =?,
c. gcd(a, a+ 2) =?,
d. gcd(ca, cb) =?.

Theorem 4.9.1. If n > 0 is a composite number then there exists a prime
p with p2 ≤ n so that p|n. [May need to move this past 4.17.]

Exercise 4.18. Show that if gcd(a, b) = 1, then gcd(a+ b, a− b) is 1 or 2.

Exercise 4.19. If a and b are even then gcd(a, b) = 2gcd(a
2
, b
2
). If a is even

and b is odd then gcd(a, b) = gcd(a
2
, b).

Theorem 4.10. Let a and b be integers at least one of which is not 0.
Then a and b are relatively prime if and only if there exist integers x and y
so that:

ax+ by = 1.

Theorem 4.11. Let a, b and c be integers so that a|bc and gcd(a, b) = 1.
Then a|c.

Theorem 4.12. [Euclid’s lemma.]. Let a, b and c be integers so that a|c,
b|c and gcd(a, b) = 1. Then ab|c.

Theorem. 4.13. If gcd(e, f) = 1, e|a and f |a, then ef |a.

Exercise 4.20.
a. If gcd(a, b) = 1 and c|(a+ b) then gcd(a, c) = 1.
b. If a|bc then a|gcd(a, c)gcd(a, b).
c. If gcd(a, b) = 1 then gcd(an, bn) = 1.
d. If gcd(a, b) = 1 and a|bc then a|c.
e. If gcd(a, b) = 1, a|c and b|c, then ab|c.
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f. If gcd(a, b) = gcd(a, c) = 1 then gcd(a, bc) = 1.
g. gcd(3k + 2, 5k + 3) = 1.

Theorem 4.14. [The Euclidean Algorithm to calculate the Greatest Com-
mon Divisor.] Suppose that a and b are two positive integers. Let r0 = a
and r1 = b, then recursively define rn+1 and qn using the division algorithm
by:

rn−1 = rnqn + rn+1.

Then there exists an integer k so that rk = 0 and if k is the first such
integer then gcd(a, b) = rk−1.

Definition Let a and b be two positive integers then the least common
multiple of a and b is the smallest positive integer m so that a|m and b|m.

The common notation for the least common multiple m of a and b is:
m = [a, b] or m = lcm(a, b). We will use the latter, though you should be
aware that the former is common.

Theorem 4.15. Let a and b be two positive integers. Then:

ab = lcm(a, b)gcd(a, b).

Theorem 4.16. If gcd(a, b) = 1 and a|bc then a|c.

Theorem 4.17. If each of a and b is an integer, p is a prime number and
p|ab, then either p|a or p|b.

Theorem 4.18’. Suppose that p is a prime and n is a positive integer
greater than one. Then there is a unique non-negative integer k so that
n = pkq for some integer q and p - q (i.e. p does not divide q). [Note that, if
not proven separately, this is also a corollary of the Fundamental Theorem
of Arithmetic.]

Theorem 4.18. Suppose that p is a prime, that for each i ≤ n, ai is a
positive number and
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p
∣∣∣ n∏
i=1

ai,

then there exists a k so that p|ak.

Theorem 4.19. [The Fundamental Theorem of Arithmetic.] Every pos-
itive integer n greater that 1 has a unique representation as a product of
primes:

n = p1p2p3...pk,

such that pi ≤ pi+1.

Corollary to theorem 4.19. If a is a positive integer and p is a prime
number then there is a unique non-negative integer n so that:

a = pnQ

and the prime number p does not divide Q.

Exercise 4.21. [Applications of the Fundamental Theorem of Arithmetic.]
Assume as usual that r, s are positive integers, a, b, ... etc take on reasonable
values; assume that p denotes a prime.

a. If a3|b2 then a|b.
b. If pr|a and ps|b then pr+s|ab.
c. If pr|a then pnr|an.
d. If a2|b2 then a|b.
e. If m is a common multiple of a and b then lcm(a, b)|m.
f. If ar = br then a = b.

Exercise 4.22. [More applications.]
a. Show that log2(3) is irrational.
b. Show that

√
2 is irrational.

c. Show that if p is a prime number then
√
p is irrational.

d. Show that
√

12 is irrational.
e. Show that 3

√
2 is irrational.

f. Show that 3
√

9 is irrational.
g. Generalize b - f as much as you can.
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