Relations.

Definition. Suppose that each of A and B is a set. Then the Cartesian product $A \times B$ is defined to be:

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

Definition. The set R is a relation from A to B means that $R \subset A \times B$. If $(a, b) \in R$ then " a is related to b " is often denoted by $a R b$.

Definition. If R is a relation from the set A to the set B then the domain (Dom) and range (Rng) of R are defined as the following:
$\operatorname{Dom}(R)=\{a \in A \mid$ there exists a $b \in B$ such that $(a, b) \in R\}$
$\operatorname{Rng}(R)=\{b \in B \mid$ there exists an $a \in A$ such that $(a, b) \in R\}$.

Definition. A relation f from the set A to the set B is said to be a function if for each $x \in \operatorname{Dom}(f)$ there is a unique element $y \in B$ so that $(x, y) \in f$. Notation. This is often denoted by $f: A \rightarrow B$.

If f is a function and $(x, y) \in f$ then the unique element y is denoted by $f(x)$.

Definition.
one-to-one: The function $f: A \rightarrow B$ is said to be one-to-one if and only if whenever $f(x)=f(y)$ we have $x=y$. (Such a function is also called injective.)
onto: The function $f: A \rightarrow B$ is said to be onto if and only if whenever $b \in B$ then there exists $a \in A$ so that $f(a)=b$. (Such a function is also called surjective.)

Definition. If R is a relation from the set A to the set B then the inverse relation, written as R^{-1}, is a relation from the set B to the set A defined by:

$$
R^{-1}=\{(b, a) \mid(a, b) \in A\} .
$$

Definition. If R is a relation from the set A to the set B and S is a relation from the set B to the set C then the composition of S and R relations, written as $S \circ R$, is a relation from the set A to the set C defined by:

$$
S \circ R=\{(a, c) \mid \text { there exists } b \in B \text { so that }(a, b) \in R,(b, c) \in S\} .
$$

Example 6.1. Let $R=\{(n, m)| | n-3|+|m-5|=20 ; n, m \in \mathbb{Z}\}$. Then R is a relation.
a.) Find the domain and range of R.
b.) Find R^{-1}.
c.) Find $\left(R^{-1}\right)^{-1}$.

Example 6.2. Let $R=\{(n, m) \mid n<m ; n, m \in \mathbb{Z}\}$. Then R is a relation.
a.) Find the domain and range of R.
b.) Find R^{-1}.

Theorem 6.1. Suppose that $f: A \rightarrow B$ is a function and $g=f^{-1}$ is also a function then:

$$
\begin{aligned}
& g(f(x))=x \quad \text { for each } x \in \operatorname{Dom}(f) \\
& f(g(y))=y \quad \text { for each } y \in \operatorname{Rng}(f)
\end{aligned}
$$

Question. Is it necessary that g be a function for the theorem to hold?
Theorem 6.2. If R is a relation from the set A to the set B then

$$
\left(R^{-1}\right)^{-1}=R
$$

Theorem 6.3. If f is a function from the set A to the set B and g is a function from the set B to the set C, then

$$
(g \circ f)^{-1}=\left(f^{-1}\right) \circ\left(g^{-1}\right) .
$$

Examples.
(i) Give an example to show that $f \circ g \neq g \circ f$. (ii) Give an example of a function whose inverse is not a function.

Equivalence Relations.

Definitions. Suppose that R is a relation from the set A to itself. We will use the notation $a \sim b$ to mean that a and b are in A and a is related to b or equivalently $(a, b) \in R$. Then:
R is said to be reflexive if $x \sim x$ for all $x \in A$.
R is said to be symmetric if it is true that if $x \sim y$ then $y \sim x$.
R is said to be transitive if it is true that if $x \sim y$ and $y \sim z$ then $x \sim z$.
Definition. A relation from a set into itself is said to be an equivalence relation if it is reflexive, symmetric and transitive.

Definition. Let $R=\left\{(a, b) \mid a \sim_{R} b\right\}$ be an equivalence relation on the set A. Then for each $x \in A$, we define $[x]_{R}=\left\{y \mid y \sim_{R} x\right\}$; this is called the equivalence class of x. If the relation is understood from the context, then the subscript may be omitted.

Example. Let A denote the set of positive integers. For $x \in A$ let $n(x)$ be the maximum integer so that $2^{n(x)} \mid x$. For $a, b \in A$, define $a \sim b$ if and only if $n(a)=n(b)$. Show that \sim is an equivalence relation. Indicate what some of the equivalence classes look like. Show that $\mathcal{E}=$ $\left\{\left[2^{n}\right] \mid n\right.$ is a non-negative integer $\}$ is the collection of equivalence classes. Determine if the following are meaningful operations on \mathcal{E} (and what do I mean by "meaningful"?):

$$
\begin{aligned}
{\left[2^{n}\right] \cdot\left[2^{m}\right] } & =\left[2^{n} \cdot 2^{m}\right] \\
{\left[2^{n}\right]+\left[2^{m}\right] } & =\left[2^{n}+2^{m}\right] .
\end{aligned}
$$

Exercise 6.1. Let $A=\mathbb{Z}$ and n be a positive integer; let R be the relation so that $x \sim y$ if and only if $n \mid(y-x)$. Show that R is an equivalence relation.
(Notation. We use the notation $y=x \bmod (n)$ to indicate this specific relation R. Another notation is $x \equiv_{n} y$. If the integer n is understood then the notation $x \equiv y$ may be used.)

Notation: $\mathbb{Z}_{n}=\left\{[m]_{\equiv_{n}} \mid m \in \mathbb{Z}\right\}$.
Calculate $\left|\mathbb{Z}_{n}\right|$. [Hint: Do it for 2, 3, 4, .. first, then generalize.]

Theorem 6.4. Let R be an equivalence relation on the set A. Then the following are equivalent.

1. $[x] \cap[y] \neq \varnothing$;
2. $x \sim y$;
3. $[x]=[y]$.

Exercise 6.2.
a. Let $A=\mathbb{R}$ and \mathbb{Q} be the rational numbers; let R be the relation so that $x \sim y$ if and only if $(y-x) \in \mathbb{Q}$. Show that R is an equivalence relation. Determine $[\sqrt{2}]_{R}$; which of the following numbers are in $[\sqrt{2}]: \frac{1}{2}, \sqrt{8}, \sqrt{3}$.
b. Let $B=\mathbb{R}^{+}$and \mathbb{Q} be the rational numbers; let S be the relation on B so that $x \sim_{S} y$ if and only if $\frac{x}{y} \in \mathbb{Q}$. Show that S is an equivalence relation. Determine $[\sqrt{2}]_{S}$. Again determine which of the following numbers are in $[\sqrt{2}]_{S}: \frac{1}{2}, \sqrt{8}, \sqrt{3}$

Exercise 6.3. Let $A=\mathbb{Z} \times\{\mathbb{Z}-\{0\}\}$; let \equiv be the relation so that $(a, b) \equiv(c, d)$ if and only if $a d=c b$. Show that \equiv is an equivalence relation. Determine $[(1,1)],[(2,3)],[(-3,5)]$ (give a formula if you can).

Exercise 6.4. Let $\mathbb{Z}_{n}=\left\{[x]_{\equiv_{n}} \mid x \in \mathbb{Z}\right\}$. Determine the cardinality $\left|\mathbb{Z}_{n}\right|$ of \mathbb{Z}_{n}.

Definition. Suppose that S is a set and Γ an index set (often Γ will be the positive integers); then the collection of sets $\left\{S_{\gamma}\right\}_{\gamma \in \Gamma}$ is called a partition of S if and only if:
(i) $S=\cup_{\gamma \in \Gamma} S_{\gamma}$;
(ii) $S_{\gamma} \cap S_{\delta}=\varnothing$ whenever $\gamma \neq \delta$;
(iii) $S_{\gamma} \neq \varnothing$ for all $\gamma \in \Gamma$.

Theorem 6.5. Suppose S is a set and $\left\{S_{\gamma}\right\}_{\gamma \in \Gamma}$ is a partition of S and the relation R on S defined by $x \sim y$ if and only if $\{x, y\} \subset S_{\gamma}$ for some $\gamma \in \Gamma$. Then R is an equivalence relation on S.

Suppose S is a set and \equiv is an equivalence relation on S, then $\left\{[x]_{\equiv} \mid x \in\right.$ $S\}$ is a partition of S.

Exercise 6.6. Let S denote the set of all finite subsets of \mathbb{R} and let $A \sim B$ mean that $|A|=|B|$. Show that \sim is an equivalence relation on S.

Definition. Suppose that \equiv_{A} is an equivalence relation on the set A, \equiv_{B} is an equivalence relation on the set $B ; \mathcal{A}$ and \mathcal{B} are the sets of equivalence classes:

$$
\begin{aligned}
\mathcal{A} & =\{[a] \mid a \in A\} \\
\mathcal{B} & =\{[b] \mid b \in B\}
\end{aligned}
$$

Suppose further that $f: A \rightarrow B$ is a function. Then $F: \mathcal{A} \rightarrow \mathcal{B}$ defined by

$$
F\left([x]_{\equiv_{A}}\right)=[f(x)]_{\equiv_{B}}
$$

is well-defined means that whenever $x \equiv_{A} y$ we have $f(x) \equiv_{B} f(y)$.
Exercise 6.7. Determine which of the following are well defined functions:
a. $F: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ where $F\left([x]_{5}\right)=[2 x+1]_{5}$.
b. $F: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ where $F\left([x]_{5}\right)=\left[x^{2}\right]_{5}$.
c. $F: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{4}$ where $F\left([x]_{5}\right)=[2 x+1]_{4}$.
d. $F: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{6}$ where $F\left([x]_{3}\right)=[2 x+1]_{6}$.
e. $F: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{6}$ where $F\left([x]_{3}\right)=[5 x+3]_{6}$.
f. $F: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{6}$ where $F\left([x]_{3}\right)=\left[2 x^{2}+7\right]_{6}$.
g. $F: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{6}$ where $F\left([x]_{3}\right)=\left[x^{2}\right]_{6}$.

Exercise 6.8. For each of a-g of exercise, for the ones that are well defined determine if the function is one-to-one or onto. Then for the following functions, determine if they are well defined, if so determine if they are one-to-one or onto.
h. $F: \mathbb{Z}_{31} \rightarrow \mathbb{Z}_{31}$ where $F\left([x]_{31}\right)=[x+16]_{31}$.
i. $F: \mathbb{Z}_{31} \rightarrow \mathbb{Z}_{31}$ where $F\left([x]_{31}\right)=[7 x+16]_{31}$. $[$ Hint: $\operatorname{gcd}(7,31)=1$ and values for x and y so that $31 x+7 y=1$ can be easily obtained by observing that $7 \cdot 9=63=31 \cdot 2+1$.]
j. $F: \mathbb{Z}_{30} \rightarrow \mathbb{Z}_{30}$ where $F\left([x]_{30}\right)=[x+16]_{30}$.
k. $F: \mathbb{Z}_{30} \rightarrow \mathbb{Z}_{30}$ where $F\left([x]_{30}\right)=[5 x+16]_{30}$.
l. $F: \mathbb{Z}_{30} \rightarrow \mathbb{Z}_{5}$ where $F\left([x]_{30}\right)=[7 x+16]_{5}$.
m. $F: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{30}$ where $F\left([x]_{5}\right)=[6 x+16]_{30}$.

