Homomorphisms.

Definition. If $\left(G_{1}, *\right)$ and $\left(G_{2}, \diamond\right)$ are sets with operations $*$ and \diamond respectively and $F: G_{1} \rightarrow G_{2}$ is a function, then F is called a homomorphism if and only if

$$
F(x * y)=F(x) \diamond F(y)
$$

Definition. A homomorphism that is one-to-one is called an isomorphism.
Exercise 7.3. Prove that the following functions are homomorphisms (Caution: I think one of them is not!); which, if any, are isomorphisms:
a. $f:(\mathbb{Z},+) \rightarrow(\mathbb{Z},+)$ where $f(x)=5 x$.
b. $f:(\mathbb{R},+) \rightarrow(\mathbb{R},+)$ where $f(x)=5 x$.
c. $f:(\mathbb{R}, \cdot) \rightarrow(\mathbb{R}, \cdot)$ where $f(x)=5 x$.
d. $f:(\mathbb{R},+) \rightarrow(\mathbb{R}, \cdot)$ where $f(x)=2^{x}$.
e. $f:\left(\mathbb{R}^{+}, \cdot\right) \rightarrow(\mathbb{R},+)$ where $f(x)=\ln (x)$.
f. $f:(\mathbb{C},+) \rightarrow(\mathbb{R},+)$ where $f(x+y i)=3 x+5 y$ (\mathbb{C} denotes the complex numbers).

Exercise 7.4. Determine if the following are homomorphisms (isomorphisms), in each case make sure to check to see if the function is well-defined:
a. $F:\left(\mathbb{Z}_{5},+_{5}\right) \rightarrow\left(\mathbb{Z}_{5},+_{5}\right)$ where $F\left([x]_{5}\right)=[2 x+1]_{5}$.
b. $F:\left(\mathbb{Z}_{5},+_{5}\right) \rightarrow\left(\mathbb{Z}_{5},+_{5}\right)$ where $F\left([x]_{5}\right)=[2 x]_{5}$.
c. $F:\left(\mathbb{Z}_{10},+_{10}\right) \rightarrow\left(\mathbb{Z}_{5},+_{5}\right)$ where $F\left([x]_{5}\right)=[2 x]_{5}$.
d. $F:\left(\mathbb{Z}_{5},+_{5}\right) \rightarrow\left(\mathbb{Z}_{10},+_{10}\right)$ where $F\left([x]_{5}\right)=[2 x]_{5}$.
e. $F:\left(\mathbb{Z}_{31},+_{31}\right) \rightarrow\left(\mathbb{Z}_{31},+_{31}\right)$ where $F\left([x]_{31}\right)=[7 x]_{31}$.
f. $F:\left(\mathbb{Z}_{5}, \cdot_{5}\right) \rightarrow\left(\mathbb{Z}_{5}, \cdot_{5}\right)$ where $F\left([x]_{5}\right)=[2 x+1]_{5}$.
g. $F:\left(\mathbb{Z}_{5}, \cdot{ }_{5}\right) \rightarrow\left(\mathbb{Z}_{5}, \cdot{ }_{5}\right)$ where $F\left([x]_{5}\right)=[2 x]_{5}$.
h. $F:\left(\mathbb{Z}_{4},+_{4}\right) \rightarrow\left(\mathbb{Z}_{5},{ }_{5}\right)$ where $F\left([x]_{4}\right)=[2]_{5}^{x}$.

Exercise 7.5. Suppose $F:\left(\mathbb{Z}_{5},+_{5}\right) \rightarrow\left(\mathbb{Z}_{n},+_{n}\right)$ where $F\left([x]_{5}\right)=[a x+b]_{n}$ is a homomorphism. Then:
1.) Either a or n is divisible by 5 .
2.) $b \sim_{n} 0$.
3.) $F\left([0]_{5}\right)=[0]_{n}$.

Theorem 7.7 Suppose $F:\left(\mathbb{Z}_{m},+_{m}\right) \rightarrow\left(\mathbb{Z}_{m},+_{m}\right)$ is a homomorphism. Then $F\left([0]_{m}\right)=[0]_{n}$.

Exercise 7.6. Let S_{n} denote the permutation group on the elements $\{1,2,3, \ldots, n\}$. Determine if the following are homomorphisms: in each case make sure to check to see if the function is well-defined:
a. $F:\left(\mathbb{Z}_{5},+_{5}\right) \rightarrow\left(S_{5}, \cdot\right)$ where $F\left([x]_{5}\right)=(12345)^{x}$,
b. $F:\left(\mathbb{Z}_{6},+_{6}\right) \rightarrow\left(S_{6}, \cdot\right)$ where $F\left([x]_{6}\right)=(123456)^{x}$,
c. $F:\left(\mathbb{Z}_{5},+_{5}\right) \rightarrow\left(S_{6}, \cdot\right)$ where $F\left([x]_{5}\right)=(123456)^{x}$,
d. $F:\left(\mathbb{Z}_{6},+{ }_{6}\right) \rightarrow\left(S_{5}, \cdot\right)$ where $F\left([x]_{6}\right)=((12)(345))^{x}$,
e. $F:\left(\mathbb{Z}_{5}-\{0\},{ }_{5}\right) \rightarrow\left(S_{4}, \cdot\right)$ where $F\left([x]_{5}\right)=(1234)^{x}$,
f. $F:\left(\mathbb{Z}_{8},+_{8}\right) \rightarrow\left(S_{4}, \cdot\right)$ where $F\left([x]_{8}\right)=(1234)^{x}$.

