Groups

Definition (reminder) If $n \in \mathbb{N}$ then for $a, b \in \mathbb{Z}$ we define the equivalence relation \equiv_{n} on \mathbb{Z} as follows: $a \equiv_{n} b$ if and only if $n \mid(b-a) ; \mathbb{Z}_{n}$ denotes the equivalence classes: $\mathbb{Z}_{n}=\left\{[x]_{n} \mid x \in \mathbb{Z}\right\}$.

Theorem 9.0. Define the operation $+_{n}$ and \cdot_{n} on \mathbb{Z} as follows:

$$
\begin{aligned}
{[x]_{n}+_{n}[y]_{n} } & =[x+y]_{n} \\
{[x]_{n} \cdot{ }_{n}[y]_{n} } & =[x \cdot y]_{n}
\end{aligned}
$$

Then the operations $+_{n}$ and \cdot_{n} are well defined.
Exercise. Consider the objects $\mathbb{Z}_{4}, \mathbb{Z}_{5}, \mathbb{Z}_{6}, \mathbb{Z}_{7}$ with the operations $+_{n}$ and ${ }_{n}$. Construct the addition and multiplication "tables". We will be making heavy use of these objects.

A group is a set of elements G with an operation • that has the following properties:

1. Closure: if $x \in G$ and $y \in G$ then

$$
x \cdot y \in G
$$

2. Associativity: if $x, y, z \in G$ then

$$
(x \cdot y) \cdot z=x \cdot(y \cdot z)
$$

3. Identity: there is an element $e \in G$ so that for each $x \in G$:

$$
e \cdot x=x=x \cdot e
$$

4. Inverses: for each $x \in G$ there is an element x^{-1} so that

$$
x \cdot x^{-1}=e=x^{-1} \cdot x
$$

Theorem 9.1 [Uniqueness of the identity]. Suppose that G is a group with identity e. If \hat{e} is an element of G so that for all $x \in G, \hat{e} x=x=x \hat{e}$ then $e=\hat{e}$.

Theorem 9.2 [Uniqueness of the inverse]. Suppose that G is a group with identity e and $x \in G$. Then there is a unique element $x^{\prime} \in G$ so that $x \cdot x^{\prime}=x^{\prime} \cdot x=e$. [Notation: the unique inverse of the element x is denoted by x^{-1}.]

Theorem 9.3. Suppose that G is a group and $x, y, z \in G$ are arbitrary elements. Then:

1. $\left(x^{-1}\right)^{-1}=x$.
2. $(x y)^{-1}=y^{-1} x^{-1}$.
3. $(x y=x z) \Rightarrow(y=z)$.
4. $(y x=z x) \Rightarrow(y=z)$.

Example 9.1. Let $S=\{1,2,3, \ldots, n\}$ define S_{n} to be the collection of all 1-to-1 functions of S onto itself. Define the operation o between the elements $\alpha, \beta \in S_{n}$ by ordinary composition, thus for each $s \in S$ we have $(\alpha \circ \beta)(x)=\alpha(\beta(x))$. The set S_{n} with the operation \circ is a group.

Definition. A group G is said to be Abelian (or to be a commutative group) if and only if $x y=y x$ for all $x, y \in G$.

Exercise 9.1. Construct the multiplication charts for the groups S_{2} and S_{3}. Are these groups Abelian?

Exercise 9.2. How many elements are in the groups S_{4} and S_{5}. Show that these groups are not Abelian and that each one of these has a "subgroup" equivalent to S_{3}.

Definition. Suppose that G is a group with operation • and $H \subset G$. Then H is said to be a subgroup of G if H with the operation • is a group.

Exercise 9.3. We would like to determine when the following sets with the indicated operations are groups, assume n is an integer with $n>1$:

$$
\begin{aligned}
\mathbb{Z}_{n} & \text { with operation }+\bmod n \\
\mathbb{Z}_{n}-\{[0]\} & \text { with operation } \cdot \bmod n .
\end{aligned}
$$

Look at examples for $n=6,7,10,11$. Which of these yield groups (it's not necessary to write out the whole table to answer this question.) (And why was 0 removed from the set?)

Theorem 9.4. Suppose that G is a group with operation • and $H \subset G$ and it it true that for $h_{1}, h_{2} \in H$ we have $h_{1} \cdot h_{2}^{-1} \in H$. Then H is a subgroup of G.

Notational conventions. When working with the set \mathbb{Z}_{n}, then I will frequently omit the brackets $[x]_{n}$ when it is understood that we are working with \mathbb{Z}_{n}; and operations $+_{n}$ and \cdot_{n} are often denoted by $+\bmod n$ or $\cdot \bmod n$ respectively. Thus following are equivalent ways of writing the same thing:

$$
\begin{aligned}
x \equiv_{n} y & \Leftrightarrow x=y \bmod n \\
{[3]_{5}+5[4]_{5}=[2]_{5} } & \Leftrightarrow 3+4=2 \bmod 5 .
\end{aligned}
$$

Exercise 9.4. Find all the subgroups of $\left(\mathbb{Z}_{6},+\bmod 6\right)$ and of $\left(\mathbb{Z}_{7}-\right.$ $\{[0]\}, \times \bmod 7)$.

Definition. For \mathbb{Z}_{n} I want to be able to define the quantity $[b]=[a]^{[x]}$. Unlike the addition and multiplication operators this is not naturally welldefined. (In fact if $x<0$ then a^{x} is not even an integer.) So we define it as follows: if whenever $x, y>0$ we have that $x \equiv_{n} y \Rightarrow a^{x} \equiv a^{y}$ then we define $[b]_{n}=\left[a^{x}\right]_{n}$. When it is defined, we can let $\left[a^{x}\right]$ denote $[b]$ for positive integers x.

Definition. Suppose that each of G and H are groups with operations \otimes and \boxtimes respectively and that $\varphi: G \rightarrow H$ is a function. Then φ is called a homomorphism if the following holds for all $x, y \in G$:

$$
\varphi(x \otimes y)=\varphi(x) \boxtimes \varphi(y) .
$$

A homomorphism that is 1-to-1 is called an isomorphism.

Exercise 9.5 Determine which of the following functions are well-defined, if so are they homomorphisms: (Note that I am abbreviating the elements of the groups so that, for example in a: x means $[x]_{6}, \varphi(x)$ means $[\varphi(x)]_{12}$.) Are they isomorphisms?

$$
\begin{array}{llll}
\text { a. } & \varphi\left(\mathbb{Z}_{6},+6\right) \rightarrow\left(\mathbb{Z}_{12},+_{12}\right) & \text { with } & \varphi(x)=2 x \bmod 12 \\
\text { b. } & \varphi\left(\mathbb{Z}_{6},+6\right) \rightarrow\left(\mathbb{Z}_{10},+_{10}\right) & \text { with } & \varphi(x)=2 x \bmod 10 \\
\text { c. } & \varphi\left(\mathbb{Z}_{6},+_{6}\right) \rightarrow\left(\mathbb{Z}_{7}-\{0\}, \cdot_{7}\right) & \text { with } & \varphi(x)=3^{x} \bmod 7 \\
\text { d. } & \varphi\left(\mathbb{Z}_{6},+_{6}\right) \rightarrow\left(\mathbb{Z}_{7}-\{0\}, \cdot_{7}\right) & \text { with } & \varphi(x)=2^{x} \bmod 7 \\
e . & \varphi\left(\mathbb{Z}_{6},+_{6}\right) \rightarrow\left(\mathbb{Z}_{7}-\{0\}, \cdot \cdot_{7}\right) & \text { with } & \varphi(x)=5^{x} \bmod 7 \\
\text { f. } & \varphi\left(\mathbb{Z}_{12},+_{12}\right) \rightarrow\left(\mathbb{Z}_{6},+_{6}\right) & \text { with } & \varphi(x)=x \bmod 6
\end{array}
$$

Notation. If G is a group with identity element e and $g \in G$ then:
i. g^{0} denotes e;
ii. g^{1} denotes g;
iii. for a positive integer $n>1, g^{n}$ is defined inductively as:

$$
g^{n}=g^{n-1} \cdot g .
$$

Theorem 9.5. Suppose that G is a group with the usual notation for the operation. Then:

$$
\begin{array}{ll}
\text { a. } & \left(g^{-1}\right)^{n}=\left(g^{n}\right)^{-1} \\
\text { b. } & \text { for } g \in G, n \in \mathbb{Z}^{+} \\
g^{n} \cdot g^{m}=g^{n+m} & \text { for } g \in G, n, m \in \mathbb{Z}^{+}
\end{array}
$$

Exercise 9.6. Prove that if G is a group and $g \in G$ then $H=\left\{g^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G. Note: H is called a cyclic subgroup of G; if there is an element of $g \in G$ so that the corresponding subgroup H is all of G then G is called a cyclic group.

Theorem 9.6. Suppose that G is a group and H is a subgroup of G. Define the relation \sim on G by $g \sim h$ if and only if $g h^{-1} \in H$. Then:
a. \sim is an equivalence relation on G.
b. Let $p \in G$ and define $H p=\{h p \mid h \in H\}$; then the function $f: H \rightarrow H p$ defined by $f(h)=h p$ is 1-to-1 and onto. Definition: the set $H p$ is a called the right coset of H generated by p.
c. $[e]_{\sim}=H$.
d. The collection $\{H g \mid g \in G\}$ is a partition of G.

Exercise 9.7. Consider $G=\left(\mathbb{Z}_{12},+\right)$. Let $H=\{0,3,6,9\}$.
a. Show that H is a subgroup of G.
b. Find all the cosets of H in G and denote this set by G / H.
[Note: If $x \in G$ then $H+_{12}[x]_{12}=\left\{[h+x]_{12} \mid[h]_{12} \in H\right\}$ is the coset generated by x.]
c. For $H+_{12}[x]_{12}, H+{ }_{12}[y]_{12} \in G / H$ define $\left(H+{ }_{12}[x]_{12}\right) \oplus\left(H+{ }_{12}[y]_{12}\right)$ by $\left(H+_{12}[x]_{12}\right) \oplus\left(H+{ }_{12}[y]_{12}\right)=H+{ }_{12}[x+y]_{12}$.
d. Show that \oplus is well defined and construct the addition table for G / H with the operation \oplus.

Let $\varphi: G \rightarrow G / H$ be defined by $\varphi(x)=H+{ }_{12}[x]_{12}$.
e. Is φ well defined?
f. Is φ 1-1 and/or onto?
g. Is φ a homomorphism? - an isomorphism?

Corollary to 9.6 [Lagrange's theorem]. If G is a group and H is a subgroup of G then $|H|||G|$.

Theorem 9.7. Suppose that G is a group and $g \in G$. Then the set $H=\{h \mid g h=h g\}$ is a subgroup of G.

Theorem 9.8. Suppose that G is a group. Let $H=\{h \in G \mid g h=$ $h g$ for all $g \in G\}$ is a subgroup of G. (This is called the commutator subgroup of G and is the set all elements that commute with all the elements of G.)

Theorem 9.10. Suppose that G_{1} and G_{2} are groups and $\varphi: G_{1} \rightarrow G_{2}$ is a homomorphism. Then $h\left(e_{1}\right)=e_{2}$ where e_{1} is the identity element of G_{1} and e_{2} is the identity element of G_{2}.

Exercise 9.8. Consider the group $\left(\mathbb{Z}_{n},+_{n}\right)$ with the operation of addition $\bmod n$. Suppose that H is a subgroup of \mathbb{Z}_{n}. Let J be the collection of all cosets of H in \mathbb{Z}_{n}. Define the operation \oplus on J as follows:

$$
\left(H+_{n} x\right) \oplus\left(H+_{n} y\right)=H+_{n}\left(x+_{n} y\right)
$$

Define the operation \boxplus as follows: if H_{1} and H_{2} are two cosets then

$$
H_{1} \boxplus H_{2}=\left\{x+_{n} y \mid x \in H_{1}, y \in H_{2}\right\} .
$$

Show that:
a. \oplus is well defined.
b. $H_{1} \boxplus H_{2}=H_{1} \oplus H_{2}$.
b. J with the operation \oplus is a group.
c. J is abelian.
d. $|H| \cdot|J|=n$.

Exercise 9.9. Prove that a group G is abelian if and only if $(x y)^{2}=x^{2} y^{2}$ for all $x, y \in G$.

