
Groups

Definition (reminder) If n ∈ N then for a, b ∈ Z we define the equivalence
relation ≡n on Z as follows: a ≡n b if and only if n|(b − a); Zn denotes the
equivalence classes: Zn = {[x]n|x ∈ Z}.

Theorem 9.0. Define the operation +n and ·n on Z as follows:

[x]n +n [y]n = [x+ y]n

[x]n ·n [y]n = [x · y]n

Then the operations +n and ·n are well defined.

Exercise. Consider the objects Z4,Z5,Z6,Z7 with the operations +n and
·n. Construct the addition and multiplication “tables”. We will be making
heavy use of these objects.

A group is a set of elements G with an operation · that has the following
properties:

1. Closure: if x ∈ G and y ∈ G then
x · y ∈ G;

2. Associativity: if x, y, z ∈ G then
(x · y) · z = x · (y · z);

3. Identity: there is an element e ∈ G so that for each x ∈ G:
e · x = x = x · e;

4. Inverses: for each x ∈ G there is an element x−1 so that
x · x−1 = e = x−1 · x.

Theorem 9.1 [Uniqueness of the identity]. Suppose that G is a group with
identity e. If ê is an element of G so that for all x ∈ G, êx = x = xê then
e = ê.

Theorem 9.2 [Uniqueness of the inverse]. Suppose that G is a group
with identity e and x ∈ G. Then there is a unique element x′ ∈ G so that
x · x′ = x′ · x = e. [Notation: the unique inverse of the element x is denoted
by x−1.]
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Theorem 9.3. Suppose that G is a group and x, y, z ∈ G are arbitrary
elements. Then:

1. (x−1)−1 = x.
2. (xy)−1 = y−1x−1.
3. (xy = xz)⇒ (y = z).
4. (yx = zx)⇒ (y = z).

Example 9.1. Let S = {1, 2, 3, . . . , n} define Sn to be the collection of
all 1-to-1 functions of S onto itself. Define the operation ◦ between the
elements α, β ∈ Sn by ordinary composition, thus for each s ∈ S we have
(α ◦ β)(x) = α(β(x)). The set Sn with the operation ◦ is a group.

Definition. A group G is said to be Abelian (or to be a commutative
group) if and only if xy = yx for all x, y ∈ G.

Exercise 9.1. Construct the multiplication charts for the groups S2 and
S3. Are these groups Abelian?

Exercise 9.2. How many elements are in the groups S4 and S5. Show that
these groups are not Abelian and that each one of these has a “subgroup”
equivalent to S3.

Definition. Suppose that G is a group with operation · and H ⊂ G. Then
H is said to be a subgroup of G if H with the operation · is a group.

Exercise 9.3. We would like to determine when the following sets with
the indicated operations are groups, assume n is an integer with n > 1:

Zn with operation + mod n

Zn − {[0]} with operation · mod n.

Look at examples for n = 6, 7, 10, 11. Which of these yield groups (it’s not
necessary to write out the whole table to answer this question.) (And why
was 0 removed from the set?)

Theorem 9.4. Suppose that G is a group with operation · and H ⊂ G and
it it true that for h1, h2 ∈ H we have h1 · h−12 ∈ H. Then H is a subgroup of
G.
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Notational conventions. When working with the set Zn, then I will fre-
quently omit the brackets [x]n when it is understood that we are working
with Zn; and operations +n and ·n are often denoted by + mod n or · mod n
respectively. Thus following are equivalent ways of writing the same thing:

x ≡n y ⇔ x = y mod n

[3]5 +5 [4]5 = [2]5 ⇔ 3 + 4 = 2 mod 5.

Exercise 9.4. Find all the subgroups of (Z6,+ mod 6) and of (Z7 −
{[0]},× mod 7).

Definition. For Zn I want to be able to define the quantity [b] = [a][x].
Unlike the addition and multiplication operators this is not naturally well-
defined. (In fact if x < 0 then ax is not even an integer.) So we define it
as follows: if whenever x, y > 0 we have that x ≡n y ⇒ ax ≡ ay then we
define [b]n = [ax]n. When it is defined, we can let [ax] denote [b] for positive
integers x.

Definition. Suppose that each of G and H are groups with operations ⊗
and � respectively and that ϕ : G → H is a function. Then ϕ is called a
homomorphism if the following holds for all x, y ∈ G:

ϕ(x⊗ y) = ϕ(x) � ϕ(y).

A homomorphism that is 1-to-1 is called an isomorphism.

Exercise 9.5 Determine which of the following functions are well-defined,
if so are they homomorphisms: (Note that I am abbreviating the elements
of the groups so that, for example in a: x means [x]6, ϕ(x) means [ϕ(x)]12.)
Are they isomorphisms?

a. ϕ(Z6,+6)→ (Z12,+12) with ϕ(x) = 2x mod 12
b. ϕ(Z6,+6)→ (Z10,+10) with ϕ(x) = 2x mod 10
c. ϕ(Z6,+6)→ (Z7 − {0}, ·7) with ϕ(x) = 3x mod 7
d. ϕ(Z6,+6)→ (Z7 − {0}, ·7) with ϕ(x) = 2x mod 7
e. ϕ(Z6,+6)→ (Z7 − {0}, ·7) with ϕ(x) = 5x mod 7
f. ϕ(Z12,+12)→ (Z6,+6) with ϕ(x) = x mod 6
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Notation. If G is a group with identity element e and g ∈ G then:
i. g0 denotes e;
ii. g1 denotes g;
iii. for a positive integer n > 1, gn is defined inductively as:

gn = gn−1 · g.

Theorem 9.5. Suppose that G is a group with the usual notation for the
operation. Then:

a. (g−1)n = (gn)−1 for g ∈ G, n ∈ Z+

b. gn · gm = gn+m for g ∈ G, n,m ∈ Z+

Exercise 9.6. Prove that if G is a group and g ∈ G then H = {gn|n ∈ Z}
is a subgroup of G. Note: H is called a cyclic subgroup of G; if there is an
element of g ∈ G so that the corresponding subgroup H is all of G then G is
called a cyclic group.

Theorem 9.6. Suppose that G is a group and H is a subgroup of G.
Define the relation ∼ on G by g ∼ h if and only if gh−1 ∈ H. Then:

a. ∼ is an equivalence relation on G.
b. Let p ∈ G and define Hp = {hp|h ∈ H}; then the function

f : H → Hp defined by f(h) = hp is 1-to-1 and onto. Definition: the set Hp
is a called the right coset of H generated by p.

c. [e]∼ = H.
d. The collection {Hg|g ∈ G} is a partition of G.

Exercise 9.7. Consider G = (Z12,+). Let H = {0, 3, 6, 9}.
a. Show that H is a subgroup of G.
b. Find all the cosets of H in G and denote this set by G/H.

[Note: If x ∈ G then H +12 [x]12 = {[h + x]12
∣∣[h]12 ∈ H} is the coset

generated by x.]
c. For H+12[x]12, H+12[y]12 ∈ G/H define (H+12[x]12)⊕(H+12[y]12)

by (H +12 [x]12)⊕ (H +12 [y]12) = H +12 [x+ y]12.
d. Show that ⊕ is well defined and construct the addition table for

G/H with the operation ⊕.
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Let ϕ : G→ G/H be defined by ϕ(x) = H +12 [x]12.
e. Is ϕ well defined?
f. Is ϕ 1-1 and/or onto?
g. Is ϕ a homomorphism? - an isomorphism?

Corollary to 9.6 [Lagrange’s theorem]. If G is a group and H is a subgroup

of G then |H|
∣∣∣|G|.

Theorem 9.7. Suppose that G is a group and g ∈ G. Then the set
H = {h|gh = hg} is a subgroup of G.

Theorem 9.8. Suppose that G is a group. Let H = {h ∈ G|gh =
hg for all g ∈ G} is a subgroup of G. (This is called the commutator sub-
group of G and is the set all elements that commute with all the elements of
G.)

Theorem 9.10. Suppose that G1 and G2 are groups and ϕ : G1 → G2 is a
homomorphism. Then h(e1) = e2 where e1 is the identity element of G1 and
e2 is the identity element of G2.

Exercise 9.8. Consider the group (Zn,+n) with the operation of addition
mod n. Suppose that H is a subgroup of Zn. Let J be the collection of all
cosets of H in Zn. Define the operation ⊕ on J as follows:

(H +n x)⊕ (H +n y) = H +n (x+n y).

Define the operation � as follows: if H1 and H2 are two cosets then

H1 �H2 = {x+n y|x ∈ H1, y ∈ H2}.

Show that:
a. ⊕ is well defined.
b. H1 �H2 = H1 ⊕H2.
b. J with the operation ⊕ is a group.
c. J is abelian.
d. |H| · |J | = n.

Exercise 9.9. Prove that a group G is abelian if and only if (xy)2 = x2y2

for all x, y ∈ G.
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