Induction Exercises.

Problem 1. Prove that for each positive integer n :

$$
\sum_{i=1}^{n}(3 i+2)=\frac{n(3 n+7)}{2}
$$

Problem 2. Prove that for each positive integer n :

$$
\sum_{i=1}^{n} i(i+1)=\frac{n(n+1)(n+2))}{3} .
$$

Problem 3. Prove that if $r>0$ is a real number and $r \neq 1$ then the following holds for each positive integer n :

$$
\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}
$$

Problem 4. Prove that for each positive integer n :

$$
\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)}=\frac{n}{3 n+9}
$$

Problem 5. Prove that for each positive integer n :

$$
\sum_{i=1}^{n} \frac{9}{10^{i}}=1-\frac{1}{10^{n}}
$$

Problem 6. Prove that for each positive integer n :

$$
5 \mid\left(3^{4 n}+4\right)
$$

