
Math 3100 Summer 2021
Project 01

Key

Part I Predict Logic.

Comments on notation: if R(x, y) is a statement then

∃x∀yR(x, y)

is parsed as follows:
∃x(∀y(R(x, y))).

Another way of thinking about this is as follows: Let H(x) be the state-
ment ∀yR(x, y) then ∃x∀yR(x, y) is equivalent to ∃xH(x). We could write
this as

∃x∀yR(x, y) = ∃xH(x),

or

∃x∀yR(x, y) ⇔ ∃xH(x).

For example if R(x, y) is the statement x < 1 + y2, then R(x, y) is true
because if we let x = 0.5 then 0.5 < 1 + y2 no matter what y is; so H(0.5)
is always true this says that ∀yR(0.5, y). And since the statement is true for
x = 0.5 it follows that there is a value of x for which the statement is true,
therefore

∃x∀yR(x, y).

We can also conclude that if a statement is true for all y, then there obviously
exists a y value (in fact any will do) that makes the statement true. Thus

∃x∀yR(x, y) ⇒ ∃x∃yR(x, y).

Exercise 1.1. Argue that the following are true implications no matter
what the statement R(x, y) is. In each case give an example of a statement
for R(x, y) for which the right side is true but the left side is not - this proves
that the implication arrows can’t be proven to go the other way. (Hint: you
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might want to do this after Exercise 2.1 and 2.2 since these will produce
answers for some of these.):

∀x∀yR(x, y) ⇒ ∃x∀yR(x, y);

∃x∀yR(x, y) ⇒ ∀y∃xR(x, y);

∀y∃xR(x, y) ⇒ ∃x∃yR(x, y).

Note we may sometimes rewrite this as:

∀x∀yR(x, y)⇒ ∃x∀yR(x, y)⇒ ∀y∃xR(x, y)⇒ ∃x∃yR(x, y).

Solution. The statement ∀x∀yR(x, y) is true whenever R(x, y) is true no
matter what values x and y are. So, if R(x, y) is true for all x and y, then
it’s true for one specific x and all y, in fact, any x will do. Therefore,

∀x∀yR(x, y) ⇒ ∃x∀yR(x, y).

The statement ∃x∀yR(x, y) says that there is an x value, say x = x0 so
that R(x0, y) is true no matter what values of y are chosen. The statement
∀y∃xR(x, y) says that for each y value, there is an x value (which would
usually depend on y), say x = xy so that R(xy, y) is true no matter what the
value of y. Therefore,

∃x∀yR(x, y) ⇒ ∀y∃xR(x, y).

The statement ∀y∃xR(x, y) says that for each y value, there is an x value
say x = xy so that R(xy, y) is true no matter what the values y are. Therefore,
since the statement R(xy, y) is true for all y, it’s true for a specific y, say y0.
Therefore the statement R(xy0 , y0) is true, so ∃x∃yR(x, y). Therefore

∀y∃xR(x, y) ⇒ ∃x∃yR(x, y).

Exercise 1.2. Similarly, argue that the following are true implications no
matter what the statement R(x, y) is and that in each case the implication
does not go in the other direction.

∀y∀xR(x, y) ⇒ ∃y∀xR(x, y);

∃y∀xR(x, y) ⇒ ∀x∃yR(x, y);

∀x∃yR(x, y) ⇒ ∃y∃xR(x, y).
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Solution. Just interchange the role of x and y in the previous solution (for
1.1) and you obtain a solution for exercise 1.2.

For exercises 2.1 and 2.2 you may use all the facts that you know about
the real numbers.

Exercise 2.1. With the understanding that ∀y∀xR(x, y) = ∀x∀yR(x, y),
and similarly for the ∃ symbol, there are six permutations of the allowable
statements with symbols ∀ and ∃ and variables x and y. For the following
statement R(x, y) : 3x − 4y = 10, determine which of the six are true and
which are false and argue in each case why.

Solution. For R(x, y) : 3x− 4y = 10 we have

∀y∀xR(x, y) is false; (1)

∃x∀yR(x, y) is false; (2)

∀y∃xR(x, y) is true; (3)

∃y∃xR(x, y) is true; (4)

∃y∀xR(x, y) is false; (5)

∀x∃yR(x, y) is true. (6)

1. Since R(1, 1) is false, then statement (1) is false.
2. Since there is no single value of x so that for every y we have 3x−4y =

10, then (2) is false.
3. Since x = (10 + 4y)/3 makes the statement 3x − 4y = 10 true it

follows that R((10 + 4y)/3, y) is true so (3) is true. Notice in this case, the
existence of the x depends on which value of y is chosen for the ∀y clause of
the statement.

4. Observe that the statement R(10
3
, 0) is true so (4) is true.

5. Since there is no single value of y so that for every x we have 3x−4y =
10, then (5) is false.

6. Observe that R(x, (3x− 10)/4) is true, so (6) is true.

Exercise 2.2. Repeat exercise 2.2 for the statement R(x, y) : x2 + y > 1.
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Solution. For R(x, y) : x2 + y > 1 we have

∀y∀xR(x, y) is false; (7)

∃x∀yR(x, y) is false; (8)

∀y∃xR(x, y) is true; (9)

∃y∃xR(x, y) is true; (10)

∃y∀xR(x, y) is true; (11)

∀x∃yR(x, y) is true. (12)

7. Since R(1
2
, 1
2
) is false, then statement (7) is false.

8. There is no single value of x so that for every y we have 3x2 + y > 1;
because if there were such an x, setting y = −2 − x2 makes the statement
R(x, y) false. So (8) is false.

9. Since x = |y|+ 2 makes the statement 3x2 + y > 1 true it follows that
R(|y|+ 2, y) is true so (9) is true.

10. Observe that the statement R(1, 1) is true so (10) is true.
11. Since for y = 2 the statement x2 + 2 > 1 is true no matter what x

value is chosen, (11) is true.
12. Observe that R(1, 1) is true, so (12) is true.

Finally I asked so show that the following hold:

∃y∀xR(x, y) ; ∀y∀xR(x, y); (13)

∀x∃yR(x, y) ; ∃y∀xR(x, y); (14)

∃y∀xR(x, y) ; ∀x∃yR(x, y). (15)

Let R1(x, y) : 3x− 4y = 10 and R2(x, y) : x2 + 2 > 1. Then:
13. Using R2, we see that (11) is true and (7) is false, so this is a valid

counterexample and so verifies (13).
14. To show the counterexample that verifies (14) we use R2 but with

the roles of x and y interchanged. (I.e.: we use R2(y, x) : y2 + x > 1.) We
see that (11) is true but (8) is false. So interchanging the roles of x and y we
have verified (14).

15. Using R1(x, y) we see that (5) is true but (4) is false, so this example
verifies (15).
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Part II Theorems about the integers.

In this section you are asked to prove some theorems about the integers.
You may only use the axioms of the integers to prove these statements (and
none of the theorems from the 02 notes). You may use a theorem that you
proved to prove a later theorem. You may also make up and prove any
lemmas that you think would be useful in your proofs.

Exercise 3. Prove the following theorems about the integers from the
axioms.

a.) If each of a, b, c and d is an integer, then

((a + b) + c) + d = (a + c) + (b + d).

Proof.

((a + b) + c) + d = ((a + (b + c)) + d Assoc. Add.
= ((a + (c + b)) + d Comm. Add.
= ((a + c) + b) + d Assoc. Add.
= (a + c) + (b + d) Assoc. Add.

b.) If each of a, b, x and y is an integer, then

(a(x + y))b = a(bx) + a(by).

Proof.

(a(x + y))b = (ax + ay)b Dist.
= b(ax + ay) Comm. Mult.
= b(ax) + b(ay) Dist.
= (ba)x + (ba)y) Assoc. Mult. (twice)
= (ab)x + (ab)y) Comm. Mult. (twice)
= a(bx) + a(by) Assoc. Mult. (twice).
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From this point on you may assume that the quantities a+ b+ c and abc
are well defined (as explained in class) and that ab + c means (a · b) + c.

c.) If x is an integer, then

x + x = 2x

where the symbol 2 is defined to be the integer equal to 1 + 1.

Proof.
x + x = x1 + x1 Mult. Id. (twice)

= x(1 + 1) Dist.
= x(2) definition
= 2x Comm. Mult.

d.) If x is an integer, then

(x + (−1)) · (x + 1) = x2 − 1.

Where x2 − 1 means x2 + (−1) as in the notes and x2 means x · x.

Proof.

(x + (−1)) · (x + 1) = (x + (−1))x + (x + (−1))1 Dist.
= (x + (−1))x + (x + (−1)) Mult. Id.
= x(x + (−1)) + (x + (−1)) Comm. Mult.
= (xx + x(−1)) + (x + (−1)) Dist.
= (x2 + x(−1)) + (x + (−1)) notation
= ((x2 + x(−1)) + x) + (−1) Assoc. Add.
= (x2 + (x(−1) + x)) + (−1) Assoc. Add.
= (x2 + ((−1)x + x)) + (−1) Comm. Mult.
= (x2 + (−x + x)) + (−1) Lemma/Theorem.
= (x2 + 0)) + (−1) Add. Inverse.
= x2 + (−1) Add. Id.
= x2 − 1 notation.

The fact that (−1)x = −x needs to be proven, via a lemma or a theorem. I
overlooked this when I made out the problem, it makes the problem harder
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than I meant. I will not take off credit if this was overlooked and I’ll give
extra credit to anyone who stated and proved the lemma.

e.) If each of a and b is an integer then there exists a unique integer x so
that

a + x = b.

Proof. Two things need to be proven: existence and uniqueness. First I’ll
prove existence.

Let x = −a + b, this follows from the existence of the additive inverse
and closure. Then:

a + x = a + (−a + b) substitution
= (a +−a) + b Assoc. Add.
= (−a + a) + b Comm. Add.
= 0 + b Add. Inverse
= b + 0 Comm. Add.
= b Add. Id.

This proves existence. To prove uniqueness, suppose that x̂ is such that
a + x̂ = b. Then,

a + x̂ = b assumption
−a + (a + x̂) = −a + b Closure
(−a + a) + x̂ = −a + b Assoc. Add.

0 + x̂ = −a + b Add. Inverse
x̂ + 0 = −a + b Comm. Add.

x̂ = −a + b Add. Id.
x̂ = x definition.

Therefore x is unique.
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