
Math 3100 Test 01.

The test is due by midnight Monday June 21. The test is open notes this
includes my notes on the website. You may not receive any other outside
assistance and may not discuss the quiz with anyone. Please affirm at the
beginning of your hand-in work that you have abided by these conditions.

Email to me as an attachment your solutions to the problems as a pdf file
with the file name beginning with your last name: e.g. smithxyztest01.pdf.

Problem 1.
Determine if the following statement is a tautology:

∼ (P ∨ (∼ Q))⇒ (∼ P ) ∧Q.

Solution. Yes, it is a tautology. It’s actually one of de Morgan’s laws with Q
replaced with ∼ Q.

Problem 2.
Consider the following relation about the real numbers:

R(x, y) : 3x + 2y + 1 = 0.

Determine which of the following statements are true and argue why the false
ones are not true.

a.) ∀x∃yR(x, y)
b.) ∃x∀yR(x, y)
c.) ∼ (∀x∃yR(x, y))
d.) ∼ (∃x∀yR(x, y))
e.) ∀x∃y(∼ R(x, y))
f.) ∃x∀y(∼ R(x, y)).

Solution.
(a) is true.

For each x the y that works to make it true is

y =
−1− 3x

2
.

(b) is false.
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There is no fixed x that makes R(x, y) true for all y. For two different
y’s the x value that makes R(x, y) true have to be different.

(c) is false.
Statement (c) is the negation of (a); since (a) is true (c) must be false.

(d) is true.
Statement (d) is the negation of (b) since (b) is false; (d) must be true.

(e) is true.
Statement (e) is the negation of (b) and so is equivalent to (d); (e) must

be true.

(f) is false.
Statement (f) is the negation of (a) and so is equivalent to (c); (f) must

be false.

Any correct reasoning on the ones that are false will be accepted.

Problem 3.
Prove that the additive inverse of an integer is unique.

Solution. [There are many possible different proofs, I give one below.]

Let x be an integer and suppose that x̂ is an additive inverse of x.

statement reason
x + x̂ = 0 hypothesis/assumption *

x + (−x) = 0 additive inverse
x + (−x) = x + x̂ transitive property of =

(x + (−x)) + (−x) = (x + x̂) + (−x) closure (& logic) *
0 + (−x) = (x + x̂) + (−x) add. inverse *

−x = (x + x̂) + (−x) add. identity *
−x = x + (x̂ + (−x)) associativity of add.
−x = x + ((−x) + x̂) commutativity of add.
−x = (x + (−x)) + x̂ associativity of add.
−x = 0 + x̂ add. inverse *
−x = x̂ add. identity *
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Therefore, since any additive inverse of x must be −x and so is unique.
[Note: The steps with * are the important steps, if the others were left off
there was no loss of credit.]

Problem 4.
Show that for each n ∈ N:

n∑
i=1

i(i + 2) =
n(n + 1)(2n + 7)

6
.

Proof. We prove the theorem by induction. Let Pn be the statement

Pn :
n∑

i=1

i(i + 2) =
n(n + 1)(2n + 7)

6
.

Then for P1 we have:

LHS1 :
1∑

i=1

i(i + 2) = 1 · 3 = 3

RHS1 :
1(1 + 1)(2 + 7)

6
=

18

6
= 3.

So P1 is true. Next we show that Pn ⇒ Pn+1. So Pn is our induction
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hypothesis. Then:

n+1∑
i=1

i(i + 2) =
n∑

i=1

i(i + 2) + (n + 1)(n + 3)

=
n(n + 1)(2n + 7)

6
+ (n + 1)(n + 3)

=
n(n + 1)(2n + 7)

6
+

(n + 1)(n + 3)

6

=
n(n + 1)(2n + 7)

6
+

(n + 1)(n + 3)

6

=
(n + 1)[n(2n + 7) + 6(n + 3)]

6

=
(n + 1)[2n2 + 7n + 6n + 18]

6

=
(n + 1)[2n2 + 13n + 18]

6

=
(n + 1)[(n + 2)(2n + 9)]

6

=
(n + 1)[((n + 1) + 1)(2(n + 1) + 7)]

6
.

The second step follows from the induction hypothesis; the last step yields
Pn+1. So the statement is true for all positive integers by the induction
axiom.

Problem 5.
Show that for each n ∈ N:

4
∣∣∣(54n + 3).

Proof. We prove the theorem by induction. Let Pn be the statement

Pn : 4
∣∣∣(54n + 3).

Then to consider P1 we have:

54·1 + 3 = 625 + 3 = 4(157).
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This verifies P1. Next we show that Pn ⇒ Pn+1. So Pn is our induction
hypothesis. Then we assume that there is an integer q so that 54n + 3 = 4q;
and some simple algebra gives us 54n = 4q − 3. So we have

54(n+1) + 3 = 54n+4 + 3

= 54n · 54 + 3

= (4q − 3) · 54 + 3

= 4q · 54 − 3 · 54 + 3

= 4q · 54 − 1872

= 4(q · 54 − 468).

The third step follows from the induction hypothesis; the last step yields
Pn+1. So the statement is true for all positive integers by the induction
axiom.

Problem 6.
Use the fundamental theorem of arithmetic (or the corollary in the notes)

to prove that 3
√

16 is irrational. Make sure to indicate your reasoning behind
each step.

Solution. [There are many possible different proofs, I give one below.]

We assume that 3
√

16 is rational and that a and b are positive integers so
that

3
√

16 =
a

b
.

Then the fundamental theorem tells us that there are unique non-negative
integers n and k so that

a = 2nP

b = 2kQ
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where P and Q are integers that are not divisible by 2. Then we have

3
√

16 =
a

b
3
√

16 · b = a

16b3 = a3

24(2kQ)3 = (2nP )3

24(23k)Q3 = 23nP 3

23k+4Q3 = 23nP 3.

Since 3 is prime and neither Q nor P are divisible by 3 then neither are Q3

nor P 3. So by the uniqueness property.

3k + 4 = 3n

4 = 3n− 3k.

But the right side is divisible by 3 and the left side is not. So this is a
contradiction, therefore the assumption that 3

√
16 is rational is false and

hence 3
√

16 is irrational.

Problem 6.
For each step in the following outline of the proof of the theorem stated,

show why the step is true. You may use the axioms of the integers and the
theorems from the 02 notes.

Theorem. Suppose that each of p, a and b is a positive integer and there
exists integers x and y (possibly negative) so that

1 = px + ay.

Then, if you have p|ab it follows that p|b.

Proof. We assume that x and y are integers so that

1 = px + ay.

Step 1. There is a number q so that

ab = pq.

Step 1 follows from the hypothesis of the theorem when is says that p|ab.
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Step 2 follows by multiplying both sides of step 1 by y.

yab = ypq.

To obtain step 3 we start with the given condition and multiply both
sides by b:

1 = px + ay given

b = bpx + bay multiply by b.

then combining this with step 2 we get

b = bpx + ypq

b = p(bx + yq).

From which we can conclude: Step 3 (conclusion).

p|b.
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