Notes 02 Theorems, Proofs Outlines.

Exercises. For each of the following theorems, a sequence of steps has been stated that outline the proof of the theorem. For each step, show why the step follows from the axioms and previous theorems. [As "previous theorems" you may assume what you know about the way integers operate with each other; for example, you may assume that if $a>0$ and $b<c$ then $a b<a c$ or if $a<0$ and $b<c$ then $a b>a c$.]

Theorem 2.3. There is no integer between 0 and 1 .
Proof. Let $P_{1}: 1 \leq 1$ and if n is a positive integer, let $P_{n}: 1 \leq n$.
Step 1. P_{1} is true.
Step 2. $P_{n} \Rightarrow P_{n+1}$ for all $n>1$.
Step 3 and conclusion. If $n \in \mathbb{N}$ then $n \geq 1$.
Then (conclusion): There is no positive integer between 0 and 1.

Theorem 2.7. [The division algorithm for positive integers.] If each of a and b is a positive integer then there exist unique non-negative integers q and r with $0 \leq r<b$ so that:

$$
a=b q+r
$$

Proof. First we prove the existence of r (and q). Let

$$
S=\{r \geq 0 \mid \text { there is a number } q \geq 0 \text { so that } a=b q+r\} .
$$

Step 1. $q=0$ and $r=a$ satisfy the definition for $r=a$ to be in the set S.

Step 2. $S \neq \emptyset$ and there is a least element of S.
Step 3. Let \hat{r} denote the least element of S and let \hat{q} be the element that by definition of S gives us $a=b \hat{q}+\hat{r}$. If we assume $\hat{r} \geq b$ then $r^{\prime}=\hat{r}-b$ and $q^{\prime}=\hat{q}+1$ satisfy the condition for $r^{\prime} \in S$.

Step 4, conclusion 1. Therefore $r^{\prime}<\hat{r}$ which contradicts the definition of \hat{r}; so there exists a number \hat{r} that satisfies the conclusion of the theorem.

Next we prove uniqueness: Suppose that \hat{r}, \hat{q} and r, q are both pairs of non-negative integers such that:

$$
\begin{array}{lll}
a=b \hat{q}+\hat{r} & \text { with } & 0 \leq \hat{q} ; 0 \leq \hat{r}<b \\
a=b q+r & \text { with } & 0 \leq q ; 0 \leq r<b .
\end{array}
$$

Step 5. If $q<\hat{q}$ then $\hat{r}<r$.
Step 6. If $\hat{r}<r$ then $0<r-\hat{r}<b$.
Step 7. If $q<\hat{q}$ then this contradicts $r<b$ and $\hat{r}<b$.
Step 8. In a similar way as steps $5-7$, we conclude that if $\hat{q}<q$ we have a contradiction.

Step 9, conclusion 2. $\hat{q}=q$.
Step 10. Since $\hat{q}=q$ we can conclude that $\hat{r}=r$.

Theorem 2.9. If $a>0, b>0$ and $a \mid b$ then $a \leq b$.
Proof.
Step 1. There is an integer q so that $b=q a$.
Step 2. $q \geq 1$.
Step 3. $a q \geq a$.
Step 4 and conclusion. $a \leq b$.

