Notes 02 Theorems, Proofs Outlines.

Exercises. For each of the following theorems, a sequence of steps has been stated that outline the proof of the theorem. For each step, show why the step follows from the axioms and previous theorems. [As "previous theorems" you may assume what you know about the way integers operate with each other; for example, you may assume that if a > 0 and b < c then ab < ac or if a < 0 and b < c then ab > ac.]

Theorem 2.3. There is no integer between 0 and 1.

Proof. Let $P_1 : 1 \leq 1$ and if n is a positive integer, let $P_n : 1 \leq n$.

Step 1. P_1 is true.

Step 2. $P_n \Rightarrow P_{n+1}$ for all n > 1.

Step 3 and conclusion. If $n \in \mathbb{N}$ then $n \ge 1$.

Then (conclusion): There is no positive integer between 0 and 1.

Theorem 2.7. [The division algorithm for positive integers.] If each of a and b is a positive integer then there exist unique non-negative integers q and r with $0 \le r < b$ so that:

$$a = bq + r$$
.

Proof. First we prove the existence of r (and q). Let

 $S = \{r \ge 0 | \text{ there is a number } q \ge 0 \text{ so that } a = bq + r\}.$

Step 1. q = 0 and r = a satisfy the definition for r = a to be in the set S.

Step 2. $S \neq \emptyset$ and there is a least element of S.

Step 3. Let \hat{r} denote the least element of S and let \hat{q} be the element that by definition of S gives us $a = b\hat{q} + \hat{r}$. If we assume $\hat{r} \ge b$ then $r' = \hat{r} - b$ and $q' = \hat{q} + 1$ satisfy the condition for $r' \in S$.

Step 4, conclusion 1. Therefore $r' < \hat{r}$ which contradicts the definition of \hat{r} ; so there exists a number \hat{r} that satisfies the conclusion of the theorem.

Next we prove uniqueness: Suppose that \hat{r}, \hat{q} and r, q are both pairs of non-negative integers such that:

 $a = b\hat{q} + \hat{r} \quad \text{with} \quad 0 \le \hat{q}; 0 \le \hat{r} < b$ $a = bq + r \quad \text{with} \quad 0 < q; 0 < r < b.$

Step 5. If $q < \hat{q}$ then $\hat{r} < r$.

Step 6. If $\hat{r} < r$ then $0 < r - \hat{r} < b$.

Step 7. If $q < \hat{q}$ then this contradicts r < b and $\hat{r} < b$.

Step 8. In a similar way as steps 5-7, we conclude that if $\hat{q} < q$ we have a contradiction.

Step 9, conclusion 2. $\hat{q} = q$. Step 10. Since $\hat{q} = q$ we can conclude that $\hat{r} = r$.

		_	

Theorem 2.9. If a > 0, b > 0 and a|b then $a \le b$.

Proof.

Step 1. There is an integer q so that b = qa.

Step 2. $q \ge 1$.

Step 3. $aq \ge a$.

Step 4 and conclusion. $a \leq b$.