
Math 3100 Test 02.

The test is due Monday July 21 before midnight. The test is open notes
this includes my notes on the website. You may not receive any other outside
assistance and may not discuss the test with anyone. Please affirm at the
beginning of your hand-in work that you have abided by these
conditions. (If you do not do so, you may be penalized.)

Email to me as an attachment your solutions to the problems
as a pdf file with the file name beginning with your last name: e.g.
LastName test02.pdf. (If you do not do so, you may be penalized.)

Problem 1.
Use the method of the division algorithm to express the greatest common

divisor d = gcd(70, 130) in the form d = 70x + 130y for integers x and y.

Solution.

10 = 70(2) + 130(−1).

Problem 2.
Find integers x and y so that 1 = 36x + 101y. Observe that this proves

that 36 and 101 are relatively prime - which theorem in the notes tells us
this?

Solution.

1 = 101(5) + 36(−14).

Theorem 4.8, 4.9 or 4.10 tells us that this means that 36 and 101 are relatively
prime.

Problem 3.
a.) Find the multiplicative inverse of [36]101 in Z101.

Solution. From problem 2 we have,

1 = 101(5) + 36(−14).

This tells us that [−14]101 = [87]101 is the multiplicative inverse we seek.
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b.) Argue that the function F : Z101 → Z101 defined by F ([x]101) =
[36x + 19]101 is one-to-one and onto.

Solution. Suppose [36x + 19]101 = [36y + 19]101. Then,

[36x + 19]101 = [36y + 19]101
[36x + 19]101 − [19]101 = [36y + 19]101 − [19]101

[36x]101 = [36y]101
[87]101 · [36x]101 = [87]101 · [36y]101

[87]101 · [36]101 · [x]101 = [87]101 · [36]101 · [y]101
[1]101 · [x]101 = [1]101 · [y]101

[x]101 = [y]101.

Therefore the function is one-to-one. Since F : Z101 → Z101 and Z101 is finite
the function must also be onto.

c.) For the element [y]101 ∈ Z101 find the element [x]101 ∈ Z101 that is
mapped onto it by the function F of part (b).

Solution. First some scratch work:

[36x + 19]101 = [y]101
[36x + 19]101 − [19]101 = [y]101 − [19]101 = [y − 19]101

[36x]101 = [y − 19]101
[87]101[36x]101 = [87]101[y − 19]101

[x]101 = [87(y − 19)]101.

Now we prove that this value is correct:

Proof.

F ([87(y − 19)]101) = [36(87(y − 19)) + 19]101
= [36(87(y − 19))]101 + [19]101
= [36 · 87]101 · [(y − 19)]101 + [19]101
= [1]101 · [(y − 19)]101 + [19]101
= [(y − 19)]101 + [19]101
= [y]101 − [19]101 + [19]101
= [y]101.
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Problem 4.
Determine if the following functions are well defined. In each case, provide

proofs for your conclusion:

a.) F : Z5 → Z10 defined by F ([x]5) = [3x + 2]10

Solution. If you try the standard technique to prove that it’s well-defined, it
doesn’t work out; so you should suspect that it isn’t well-defined. It turns
out that most reasonable choices will show what we need. I chose 1 and 6.

1 ∼5 6

F ([1]5) = [5]10
F ([1]5) = [20]10.

But 20− 5 = 15 is not divisible by 10 so the function is not well-defined.

b.) F : Z5 → Z10 defined by F ([x]5) = [6x + 4]10

Solution. Suppose that x ∼5 y; then y − x = 5q for some integer q. So
y = x + 5q, and we have:

(6y + 4)− (6x + 4) = 6y − 6x

= 6(x + 5q)− 6x

= 6x + 30q − 6x

= 30q = 10(3q).

So (6y+4)−(6x+4) is divisible by 10, and so the function is well-defined.

c.) F : Z7 → Z7 defined by F ([x]7) = [3x2 + x]7.
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Solution. Suppose that x ∼7 y; then y − x = 7q for some integer q. So
y = x + 7q, and we have:

(3y2 + y)− (3x2 + x) = (3(x + 7q)2 + (x + 7q))− (3x2 + x)

= 3(x + 7q)2 − 3x2 + 7q

= 3(x2 + 14q + 49q2)− 3x2 + 7q

= 3 · 14q + 3 · 49q2 + 7q

= 7(6q + 21q2 + q)

So (3y2 + y)− (3x2 + x) is divisible by 7 so the function is well-defined.

Problem 5 a.
Suppose that we define the operation ⊗ on Z13 as follows:

[x]13 ⊗ [y]13 = [7xy]13.

Show that the operation ⊗ is well defined.

Solution. We assume that x ∼13 a and y ∼13 b. So 13|(x− a) and 13|(y− b).
So there are integers p and q so that x = 13q + a and y = 13p + b. Then

7xy − 7ab = 7(13q + a)(13p + b)− 7ab

= 7(169qp + 13qb + 13ap + ab)− 7ab

= 7(169qp + 13qb + 13ap) + 7ab− 7ab

= 7(169qp + 13qb + 13ap)

= 13(7 · 13qp + 7qb + 7ap).

Therefore 13|(7xy − 7ab), so the operation is well-defined.

Problem 5 b.
Define the following relation on the integers:

x ∼ y means that 11|(y + 10x).

Show that ∼ is an equivalence relation.
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Solution. (1) Reflexive.

x + 10x = 11x.

Therefore 11|(x + 10x), so x ∼ x.

(2) Symmetric.
Suppose x ∼ y then 11|(y + 10x) and there is an integer q so that y + 10x =
11q. Then we have y = 11q − 10x. So:

x + 10y = x + 10(11q − 10x)

= x + 110q − 100x)

= 110q − 99x)

= 11(10q − 9x).

Therefore 11|(x + 10y), so y ∼ x.

(3) Transitive.
Suppose x ∼ y and y ∼ z then 11|(y + 10x) and 11|(z + 10y) there are
integers q and p so that y + 10x = 11q and z + 10y = 11p. Then we have
y = 11q − 10x and z = 11p− 10y. So:

z + 10x = 11p− 10y + 10x

= 11p− 10(11q − 10x) + 10x

= 11p− 110q + 100x + 10x

= 11p− 110q + 110x

= 11(p− 10q + 10x).

Therefore 11|(z + 10x), so x ∼ z.

Problem 6.
Let H = {11n | n ∈ Z}.
a.) Show that (H,+) is a group (in other words, show that H with the

usual addition of integers is a group).

Solution. (1. Associativity.) Since H is a subset of Z and we are using the
same operation, the we have associativity.
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(2. Closure.) If x ∈ H and y ∈ H then there are integers n1 and n2 so
that x = 11n1 and y = 11n2. Then

x + y = 11n1 + 11n2

= 11(n1 + n2).

So x + y ∈ H and we have closure.

(3. Identity.) If h ∈ H then h+ 0 = h so 0 is the identity. Since 0 = 11 ·0
it follows that 0 ∈ H. By commutativity of the integers 0 + h = h + 0 = h.
So H has an identity (namely 0 = 11 · 0).

(4. Inverse.) If h ∈ H then h = 11n for some n ∈ Z. But then−n ∈ Z and
so 11(−n) ∈ H. And we have h+ 11(−n) = 11n+ 11(−n) = 11n− 11n = 0.
By commutativity of the integers 11(−n) + h = h + 11(−n) = 0. So each
element has an inverse.

By conditions 1-4 the set H satisfies the condition to being a group.

b.) Consider the function f(x) : Z→ H defined by f(x) = 11x.
i.) Is f one-to-one? Why?

Solution. Yes. Suppose f(x) = f(y)

f(x) = f(y)

11x = 11y

x = y.

where the last step follows from the fact that 11 6= 0 and we can use the
cancellation property of the integers.

ii.) Is f onto? Why?

Solution. Yes. Suppose y ∈ H. Then y = 11n for some n ∈ Z. Then pick
x = n, and we have:

f(x) = 11x

= 11n

= y.
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So the function is onto.

c.) Show that f(x + y) = f(x) + f(y).

Solution.

f(x + y) = 11(x + y)

= 11x + 11y

= f(x) + f(y).

d.) Define the relation ∼ on Z by x ∼ y if and only if y − x ∈ H. Show
that ∼ is an equivalence relation.

Solution. (1) Reflexive. If x in Z then,

x− x = 0 ∈ H.

Therefore x ∼ x.

(2) Symmetric.
Suppose x ∼ y then y − x ∈ H. Since H is a group, the inverse of y − x is
in H. So,

−(y − x) ∈ H

−y + x ∈ H

x− y ∈ H.

Therefore y ∼ x.

(3) Transitive.
Suppose x ∼ y and y ∼ z then y − x ∈ H and z − y ∈ H. Since (H,+) is a
group (y − x) + (z − y) ∈ H. So z − x ∈ H. x ∼ z.

Problem 7.
Suppose that G is an arbitrary group. Prove the following statements

about G. Make sure to state the reasoning for each step.
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Solution. Since a group is associative I will assume that abc means (ab)c or
a(bc); since they are equal it doesn’t make any difference which interpretation
is assumed.

a.) Given x, y, z ∈ G. Then

(xyz)−1 = z−1y−1x−1.

Solution.

(xyz)−1(xyz) = e definition of inverse
(xyz)−1xyzz−1 = ez−1 closure

(xyz)−1xye = ez−1 def. of inverse
(xyz)−1xy = z−1 identity

(xyz)−1xyy−1 = z−1y−1 closure
(xyz)−1xe = z−1y−1 def. of inverse
(xyz)−1x = z−1y−1 identity

(xyz)−1xx−1 = z−1y−1x−1 closure
(xyz)−1e = z−1y−1x−1 def. of inverse
(xyz)−1 = z−1y−1x−1 identity.

b.) If e is the identity element of G. Then

e−1 = e.

Solution.
e−1e = e definition of inverse
e−1e = e−1 identity

e = e−1 trancsitity property of = .

c.) If x ∈ G then x2 is defined to be the element x · x. Then show that

(x−1)
2

= (x2)
−1
.

(x−1)
2
x2 = x−1x−1xx definition of notation

(x−1)
2
x2 = x−1ex def. of inverse

(x−1)
2
x2 = x−1x identity

(x−1)
2
x2 = e def. of inverse

(x−1)
2
x2(x2)

−1
= e(x2)

−1
closure

(x−1)
2
e = e(x2)

−1
closure

(x−1)
2

= (x2)
−1

identity.
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