Kermack-McKendrick (SIR) Model of Infectious Diseases.

We suppose that the have a population S of susceptible hosts for a disease, a population I of infectious host and a population R of recovered hosts. Roughly the situation may be flow charted as in the figure below:

$$
\begin{array}{|l|l|l|l|}
\hline S=\text { susceptible } & I=\text { infectious } \\
& \gamma I \\
\hline
\end{array}
$$

Simplified SIR Model 01:

For our first simplified model we will assume:

- No births (or equivalently, birth rates = death rates);
- neither immigration nor emigration;
- removed $=0$;
- no loss of immunity.

This simplifies the flow chart to the following:

$$
S=\text { susceptible } \longrightarrow I=\text { Infective } \longrightarrow R=\text { Recovered }
$$

These assumptions imply $N(t)$ is constant, $N(t)=N(0)=N_{0}$. Each of the variables S, I, R is a function of time t where, in our cases, t will be in days.

For some quantity A let ΔA denote the change of quantity A from day m at midnight to day $m+1$ at midnight; so ΔA denotes the "(average) change of quantity A per day".

$$
\begin{aligned}
\Delta S & =- \text { new infections } \\
\Delta I & =\text { new infections }- \text { new recovered } \\
\Delta R & =\text { new cures }
\end{aligned}
$$

We have:

$$
\Delta I=-\Delta S-\Delta R
$$

To set up the differential equations we consider an encounter between a susceptible and an infectious. We assume that there is a constant probability α of infection with each encounter. So assume an average of n encounters per day between members of the population; a particular infectious individual will infect $n \alpha \frac{S}{N_{0}}$ individuals per day. (Note, there is the possibility of two infectious encountering the same susceptible, this is on the order of $\left(\frac{n}{N_{0}}\right)^{2}$ and for large populations $n \ll N_{0}$ this
quantity, along with higher order multiple encounters is negligible.) So the total number of individuals infected by the infectious group per day is

$$
n \alpha \frac{S}{N_{0}} I .
$$

Let $\lambda=\frac{n \alpha}{N_{0}}$. This gives us equation (1):

$$
\begin{equation*}
\frac{d S}{d t}=S^{\prime}=-\lambda I S \tag{1}
\end{equation*}
$$

Assume that infectious individuals become cured at a constant rate proportional to the number of infectious individuals; assume this happens with proportionality constant γ so that gives us equation (2)

$$
\begin{equation*}
\frac{d R}{d t}=R^{\prime}=\gamma I \tag{2}
\end{equation*}
$$

Finally since the change of I is the change of S moving into I and minus the change of R coming from I we have equation (3) and it's equivalent, equation (4):

$$
\begin{align*}
\frac{d I}{d t}=I^{\prime} & =-\frac{d S}{d t}-\frac{d R}{d t} \\
& =-S^{\prime}-R^{\prime} \\
& =\lambda I S-\gamma I \tag{3}\\
& =(\lambda S-\gamma) I . \tag{4}
\end{align*}
$$

Following are some conclusions that can be made regarding this system of equations without solving them. Observe that by assumption $N(t)$ is constant so:

$$
\begin{aligned}
N(t) & =N(0)=N_{0} \\
S(t)+I(t)+R(t) & =N_{0} \\
S^{\prime}(t)+I^{\prime}(t)+R^{\prime}(t) & =0 .
\end{aligned}
$$

Since S, I and λ are all positive, equation (1) tells us that $S^{\prime}(t)<0$ so,

$$
\begin{aligned}
S^{\prime}(t) & <0 \\
\therefore \quad S(t) & <S_{0} \text { for all } t>0 \\
\text { So } \lambda S-\gamma & <\lambda S_{0}-\gamma \\
(\lambda S-\gamma) I & <\left(\lambda S_{0}-\gamma\right) I \\
I^{\prime} & <\left(\lambda S_{0}-\gamma\right) I .
\end{aligned}
$$

If $I^{\prime}<0$ then the epidemic fizzles out. So using this result with equation (3) from above we have that if $\lambda S_{0}-\gamma<0$ then the epidemic
fizzles; this happens when

$$
\begin{aligned}
\lambda S_{0}-\gamma & <0 \\
\lambda S_{0} & <\gamma \\
S_{0} & <\frac{\gamma}{\lambda} .
\end{aligned}
$$

For a fixed disease we have no control over the constant γ. But we have some control over the "constant" λ : since we assume that $N(t)$ is the constant N_{0} we have

$$
\lambda=\frac{n \alpha}{N_{0}}
$$

where, again, α is a constant related to the disease. But we can decrease α by making it less likely that when a susceptible meets an infectious that there will be a new infection by using masks and social distancing. Assuming we do this to obtain α^{\prime} a smaller α, then since we want $I^{\prime}<0$. So we want:

$$
\begin{aligned}
S_{0} & <\frac{\gamma}{\lambda} \\
S_{0} & <\frac{\gamma N_{0}}{n \alpha^{\prime}} \\
n \alpha^{\prime} S_{0} & <\gamma N_{0} \\
n & <\frac{\gamma N_{0}}{\alpha^{\prime} S_{0}} .
\end{aligned}
$$

Assuming $S_{0} \approx N_{0}$ so that $\frac{N_{0}}{S_{0}} \approx 1$ this gives us a way to combat an epidemic. Obviously the smaller the value of n, the smaller the average number of interactions between members of our population, the faster the epidemic will end. But we must at least have $n<\frac{\gamma}{\alpha^{\prime}}$ in order to have any hope that the epidemic can be stopped. So the strategy of decreasing n by sequestering enough individuals well below the $n<\frac{\gamma}{\alpha^{\prime}}$ threshold will eventually cause the epidemic to end.

