
Math 5000 Summer 2021
Test 02, Key

The test is due Monday July 26 before midnight. The test is open book
and open notes - this includes my notes on the website. You may not re-
ceive any other outside assistance and may not discuss the test with anyone.
Please affirm at the beginning of your hand-in work that you have
abided by these conditions. (If you do not do so, you may be penalized.)

Email to me as an attachment your solutions to the problems
as a pdf file with the file name beginning with your last name: e.g.
LastName test02.pdf. (If you do not do so, you may be penalized.)

Show all your work, you may not get full credit if the solution is incom-
plete or incorrectly done.

Problem 1. An ecologist is studying the relationship between a prey
(with population x) and a predator (with population y) in an ecosystem.
He found that there is a parameter α so that, in appropriate units, the
following system of differential equation models the populations of the prey
and predator species.

x′ = x(2− 2y − αx)

y′ = y
(

2x− 1

2

)
i.) In terms of α, find the critical point at which both population are

non-zero.

Solution. The critical point that gives non-zero values for x and y satisfy:

2− 2y − αx) = 0

2x− 1

2
= 0.

This yields

x =
1

2

y = 1− α

8
.
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ii.) He suspects that, no matter what value α has as long as the y coor-
dinate of critical point obtained in (i) is positive, then the critical point is
an attractive fixed point. Show that his suspicion is correct.

Solution. The Jacobian is

J(x, y) =

(
2− 2y − 2αx −2x

2y 2x− 1
2

)
.

So at the critical point

J =

(
−α

4
−1

2

2− α
4

0

)
.

For the eigenvalue we set the determinant of the following matrix equal to 0.

J =

(
−α

4
− λ −1

2

2− α
4
−λ

)
.

This gives us

λ
(
λ+

α

4

)
+ 1− α

8
= 0

λ2 +
α

4
λ+ 1− α

8
= 0

λ =
1

2

(
− α

4
±
√
α2

16
− 4
(

1− α

8

) )
.

In order to have an attractive fixed point the real part of λ must be negative.
So α > 0 And we need the square root to be imaginary or less than α

4
. So√

α2

16
− 4
(

1− α

8

)
<
α

4
.

Which gives us

1− α

8
> 0

8 > α.
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We observe that the y coordinate of the critical point must be positive
when

1− α

8
> 0

8 > α.

Which confirms the ecologist’s suspicion.

iii.) There is a cutoff value for α where the critical point of part (i)
switches from an attractive node to a spiral point. Determine the value of α
at which this occurs.

Solution. This occurs when the discriminant of λ above is zero:

α2

16
− 4
(

1− α

8

)
= 0

α2

16
+
α

2
− 4 = 0

α2 + 8α− 64 = 0

α = −4± 4
√

5.

We take the positive root since α must be positive.
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Problem 2. Our ecologist feels that the system of equations of problem
1 can be improved by including a term for the competition of the members
of the prey species among themselves. For the α = 2 value he came up with
the following system of equations.

x′ = x(2− 2y − 2x)

y′ = y
(

2x− 1

2
− y
)
.

Find all the critical points of this system and indicate the stability of each
of them.

Solution. For α = 2 the critical points are
(0, 0); (0,−1

2
); (1, 0); (1

2
, 1
2
).

The Jacobian is

J(x, y) =

(
2− 2y − 4x −2x

2y 2x− 1
2
− 2y

)
.

At (0, 0)

J(0, 0) =

(
2 0
0 −1

2

)
.

This gives

(2− λ)
(
− 1

2
− λ
)

= 0

λ = 2,−1

2
.

Saddle point, unstable.

At (0,−1
2
)

J(0,−1

2
) =

(
3 0
−1 1

2

)
.

This gives

(3− λ)
(1

2
− λ
)

= 0

λ = 3,
1

2
.
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Repelling fixed point, unstable.

At (1, 0)

J(1, 0) =

(
−2 −2
0 3

2

)
.

This gives

(−2− λ)
(3

2
− λ
)

= 0

λ = −2,
3

2
.

Saddle point, unstable.

At (1
2
, 1
2
)

J
(1

2
,
1

2

)
=

(
−1 −1
1 −1

2

)
.

This gives

(−1− λ)
(
− 1

2
− λ
)

+ 1 = 0

λ2 +
3

2
λ+

3

2
= 0

2λ2 + 3λ+ 3 = 0

λ = (−3±
√
−15)/4.

Attractive spiral point, stable.

Problem 3. Find all the values of λ for which the following equation with
the indicated boundary condition has a non-zero solution.

y′′ + 10y′ + λy = 0 for x ∈ [0, L] y′(0) = 0; y′(L) = 0.

[Note: the values of λ will be in terms of L.]

Solution. To solve we assume y is in the form y = ert. The polynomial
equation for r is
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r2 + 10r + λ = 0

r = −5±
√

25− λ.

The root r will be real if 25 ≥ λ.
Case 1: 25 > λ. Then there are two roots r1 = a, r2 = a + b (I express

them this way to make the algebra easier. The general solution is

y = c1e
at + c2e

(a+b)t

y′ = d1e
at + d2e

(a+b)t

= eat(d1 + d2e
bt)

y(0) = 0 = d1 + d2.

Therefore d1 = −d2. So

y′ = d1e
at − d1eatebt

y′(L) = 0 = d1e
aL − d1eaLebL

d1 = d1e
bL.

Therefore L = 0 but this is a contradiction. So there are no solutions if
25 > λ.

[Now, I inadvertently assumed d1 6= 0. This actually gives us a solution:
When λ = 0, y = 1 is a solution.]

Case 2: λ = 25. Then r = −5 is the only root of the auxiliary polynomial
(i.e. “repeated root”) and the general solution is

y = c1e
−5t + c2te

−5t.

So:

y′ = (−5c1 + c2)e
−5t − 5c2te

−5t

y′(0) = 0 = −5c1 + c2 ⇒ c2 = 5c1

y′(L) = 0 = −5c2Le
−5L

⇒ c2 = 0 and then c1 = 0.

So there is no non-zero solution in this case.
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Case 3: 25 < λ. Then r is in the form r = −5 + bi where b =
√
λ− 25;

the general solution is

y = c1e
−5t cos bt+ c2e

−5t sin(bt).

Then y′ takes on the form

y′ = d1e
−5t cos bt+ d2e

−5t sin(bt).

Where the d’s are related to the c’s in such a way that the d1 = 0, d2 = 0
implies c1 = 0, c2 = 0. [The relevant equations, according to my calculations
are: −5c1 + bc2 = d1 and −5c2 − bc1 = d2.]

Then using the boundary condition

y′(0) = 0 = d1

y′(L) = 0 = d2e
−5L sin(bL).

The only way for d2 to not be zero is if bL = nπ, this happens when

bL = nπ

b =
nπ

L√
λ− 25 =

nπ

L

λ− 25 =
n2π2

L2

λ = 25 +
n2π2

L2
.

Problem 4. Find the Fourier series for the following function defined on
[−2, 2].

f(x) =

{
x+ 2 if − 2 ≤ x < 0
2− x if 0 ≤ x ≤ 2.

Solution. The integration gives a0 = 2 and (by the symmetry since f is an
even function):

f(x) = 2
1

L

∫ L

0

cos
(nπx
L

)
dx
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an = (2− x)
2

nπ
sin
(nπ

2
x
)
− 4

n2π2
cos
(nπ

2
x
)∣∣∣2

0
.

f(x) = 1 +
∑
n odd

8

n2π2
cos
(nπ

2
x
)
.

Problem 5. Suppose that u(x, t) is the solution of the heat equation

α2∂
2u

∂x2
=
∂u

∂t

with α = 3 and with the following boundary condition over the interval
[0, L] = [0, 2].

u(x, 0) = x2 for x ∈ [0, 2]

u(0, t) = 0 for t ≥ 0

u(2, t) = 0 for t ≥ 0.

i.) Just set up the integrals, with correct limits of integration, that
gives the constants that are the coefficients of the series solution of wave
equation.

Solution. The eigenvalue λ will be

λ =
n2π2

4
.

The required coefficients are

cn =

∫ 2

0

x2 sin
(nπ

2
x
)
dx, n = 1, 2, 3, . . . .

ii.) In terms of the constants determined in (i) above, give the complete
solution of the heat equation with these boundary conditions. [Extra credit:
evaluate the integrals and obtain the series solution.]
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Solution. The series solution of the heat equation, in terms of the constants
calculated above, will be,

u(x, t) =
∞∑
n=1

cn sin
(nπ

2
x
)
e

−n2π29
4

t.
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