Anotes03 Sequential Limit Points.

Definition: A sequence is a function from the positive integers to the real numbers.

Notation: If x is a sequence then x_{n} denotes the value of the sequence associated with the integer n and the sequence itself will be denoted by $\left\{x_{n}\right\}_{n=1}^{\infty}$ or $x_{1}, x_{2}, x_{3}, \ldots$

Definition: The point P is said to be the sequential limit of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}=x_{1}, x_{2}, x_{3}, \ldots$ if and only if it is true that if S is an open set containing P then there is an integer N so that $x_{n} \in S$ for all $n>N$.

Observe that the choice of N depends on the open set S.
Definition: If A is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ then the sequence is said to converge if it has a sequential limit point, otherwise it is said to diverge.

Theorem 3.1. A sequence has at most one sequential limit point.
Theorem 3.15. If P is the sequential limit point of $\left\{x_{n}\right\}_{n=1}^{\infty}$, then 0 is the sequential limit of the sequence $\left\{x_{n}-x_{n+1}\right\}_{i=1}^{\infty}$.

Exercise 3.15. Is the converse of Theorem 3.15 true (or something close to the converse.)

Definition. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is said to be an increasing sequence if and only if for each positive integer i we have $x_{i}<x_{i+1}$.

Theorem 3.2. Suppose that P is the sequential limit point of $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $N_{1}, N_{2}, N_{3}, \ldots$ is an increasing sequence of positive integers. Then P is also the sequential limit point of $\left\{x_{N_{i}}\right\}_{i=1}^{\infty}$.

Lemma to Theorem 3.3. The point p is the sequential limit of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ if an only if the following condition holds [the $\epsilon-N$ condition.]:

If $\epsilon>0$ then there exists an integer N so that if $n>N$ then:

$$
\left|p-x_{n}\right|<\epsilon .
$$

[Many textbooks use this as the definition of sequential limit point. Note that N is dependent upon ϵ and will typically be different for different values of ϵ; I may emphasize this by denoting the integer that "goes" with $\epsilon>0$ by N_{ϵ}.]

Theorem 3.3. Suppose that A is the sequential limit point of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and B is the sequential limit point of the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$. Then $A+B$ is the sequential limit point of the sequence $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty}$.

Theorem 3.4. Suppose that A is the sequential limit point of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and c is a number. Then $c A$ is the sequential limit point of the sequence $\left\{c \cdot a_{n}\right\}_{n=1}^{\infty}$.

Theorem 3.5. Suppose that A is the sequential limit point of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and B is the sequential limit point of the sequence $\left\{b_{n}\right\}_{i=1}^{\infty}$. Then $A \cdot B$ is the sequential limit point of the sequence $\left\{a_{n} \cdot b_{n}\right\}_{n=1}^{\infty}$.

Lemma to Theorem 3.5. Suppose that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges and $M=\left\{a_{n} \mid n \in Z^{+}\right\}$is the set of terms of the sequence. Then M is bounded.

Theorem 3.6. Suppose that M is a set and p is a limit point of M. Then there exists a sequence of distinct points of M so that p is the sequential limit point of that sequence.

Exercise 3.2. Determine which of the following sequences converge; if it converges, using the results of lemma 3.3 calculate N_{ϵ} and then prove that it converges; if it diverges, prove that it diverges.
a.) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$.
b.) $\left\{2^{-n}\right\}_{n=1}^{\infty}$.
c.) $\left\{n^{2}\right\}_{n=1}^{\infty}$.
d.) $\left\{3+\frac{1}{n}\right\}_{n=1}^{\infty}$.
e.) $\left\{\frac{n-1}{n+1}\right\}_{n=1}^{\infty}$.
f.) $\left\{(-1)^{n} \frac{n-1}{n+1}\right\}_{n=1}^{\infty}$.
g.) $\left\{\frac{2 n+1}{3 n+4}\right\}_{n=1}^{\infty}$.
h.) $\left\{\frac{(-1)^{n}}{n+1}\right\}_{n=1}^{\infty}$.
i.) $\left\{\sum_{i=1}^{n} 2^{-i}\right\}_{n=1}^{\infty}$.
j.) $\left\{\sum_{i=1}^{n}(-2)^{-i}\right\}_{n=1}^{\infty}$.
k.) $\left\{\sum_{i=1}^{n} \frac{1}{i}\right\}_{n=1}^{\infty}$.
1.) $\left\{\sum_{i=1}^{n}(-1)^{i} \frac{1}{i}\right\}_{n=1}^{\infty}$.

