Anotes06, Continuous Functions.

Definitions and Notation.
The Cartesian plane \mathbb{R}^{2} is the set of all pairs: $\mathbb{R}^{2}=\{(x, y) \mid x, y \in \mathbb{R}\} ;$ these pairs are called points of the plane.

The set h is a vertical line means that there is a number r so that $h=$ $\{(x, y) \mid x=r, y \in \mathbb{R}\}$. This line is sometimes denoted by $x=r$.

The set α is a horizontal line means that there is a number a so that $\alpha=\{(x, y) \mid y=a, x \in \mathbb{R}\}$. This line is sometimes denoted by $y=a$.

A function f is a subset of R^{2} such that each vertical line intersects f in at most one point. If the vertical line $x=x_{0}$ intersects f then $f\left(x_{0}\right)$ denotes the number so that $\left(x_{0}, f\left(x_{0}\right)\right)$ is that point of intersection.

The domain of f is the set of all numbers $\{x \mid(x, y) \in f\}$ and the range of f is the set of all numbers $\{y \mid(x, y) \in f\}$.

Definition. The function f is continuous at the point $(p, f(p))$ means that if $\epsilon>0$, then there exists a number $\delta>0$ so that if x is in the domain of f and $|p-x|<\delta$ then $|f(p)-f(x)|<\epsilon$. [Note that typically δ will depend on ϵ and the point p.]

Definition. The function f is said to be continuous if it is continuous at each of its points.

Exercise 6.1. A geometric equivalence to continuity: Show that the function f is continuous at the point $P=(x, y)$ if and only if $(x, y) \in f$ and for each pair of horizontal lines α and β with P between there exists a pair of vertical lines h and k with P between them so that that every point of f between h and k also lies between α and β.

Exercise 6.2. In each case also determine the domain and range of the described function.
a.) Show that the function defined by $f(x)=x$ is continuous.
b.) Show that the function defined by $f(x)=x^{2}$ is continuous.
c.) Show that the function defined by $f(x)=\frac{1}{x}$ when $x \neq 0$ is continuous.
d.) Let $c \in R$, show that the function defined by $f(x)=c$ is continuous. (This is called the constant function.)
e.) Show that the function defined below is continuous:
$f(x)=\left\{\begin{array}{cc}0 & \text { if } x=-1 \\ \frac{1}{2} & \text { if } x=1 \\ & \text { is undefined elsewhere }\end{array}\right.$
e^{\prime}.) Show that the function defined below is not continuous:
$f(x)= \begin{cases}2+x & \text { if } x \leq 1 \\ 3-x & \text { if } 1<x .\end{cases}$
f.) Show that the function defined below is not continuous:
$f(x)= \begin{cases}0 & \text { if } x=0 \\ \frac{1}{x} & \text { if } x \neq 0\end{cases}$
g.) Show that the function defined below is not continuous:
$f(x)=\left\{\begin{array}{cc}0 & \text { if } x=0 \\ \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0\end{array}\right.$
h.) Show that the function defined below is continuous at the point $(0,0)$:
$f(x)=\left\{\begin{array}{cc}0 & \text { if } x=0 \\ x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0\end{array}\right.$
i.) Show that the function defined below is not continuous at each of its points (this is sometimes called the "salt and pepper" function):
$f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ 1 & \text { if } x \text { is rational }\end{cases}$
Definition. If each of f and g is a function and the domain of f is equal to the domain of g then:
$f+g$ denotes the function so that $(f+g)(x)=f(x)+g(x)$;
$f g$ denotes the function so that $(f g)(x)=f(x) g(x)$;
$\frac{f}{g}$ denotes the function so that $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ for all x so that $g(x) \neq 0$.
Theorem 6.1 Suppose that each of f and g is a continuous function and the domain of f is equal to the domain of g then:
a. $f+g$ is continuous;
b. $f g$ is continuous;
c. $\frac{f}{g}$ is continuous at each point where $g(x) \neq 0$.

Unless otherwise stated (explicitly or implicitly) assume that all the functions in the following theorems have domain all the reals.

Theorem 6.2. Suppose that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ has sequential limit p and that f is a function that is continuous at the point $(p, f(p))$. Then the sequence $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ has sequential limit $f(p)$.

Definition. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function and $M \subset \mathbb{R}$ then $f(M)$ denotes the set $\{f(x) \mid x \in \mathbb{R}\}$ and $f^{-1}(M)=\{x \mid f(x) \in M\}$.

Theorem 6.3. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if and only if for each open set $U \subset \mathbb{R}, f^{-1}(U)$ is open.

Definition. Suppose that f and g are functions so that the domain of f is equal to the range of g. Then $f \circ g$ is the function defined by:

$$
(f \circ g)(x)=f(g(x))
$$

Theorem 6.4. Suppose that f and g are continuous functions so that the domain of f is equal to the range of g. Then $f \circ g$ is continuous.

Theorem 6.5. Suppose that f is a continuous function and M is a compact subset of the domain of f. Then $f(M)$ is compact.
[Hint: use theorem 6.3.]
Exercise 6.3. Determine which of the following are true,
a. If f is a function, M is a subset of the domain of f and p is a limit point of M then $f(p)$ is a limit point of $f(M)$.
b. If f is a continuous function, M is a subset of the domain of f and p is a limit point of M then $f(p)$ is a limit point of $f(M)$.
c. If f is a function, M is a subset of the range of f and p is a limit point of M then $f^{-1}(p)$ is a limit point of $f^{-1}(M)$.
d. If f is a continuous function, M is a subset of the range of f and p is a limit point of M then $f^{-1}(p)$ is a limit point of $f^{-1}(M)$.

Cauchy Sequences.

Definition. Suppose that $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence. Then X is said to be a Cauchy sequence if and only if for each $\epsilon>0$ there exists an integer N so that if $n, m>N$ then $\left|x_{n}-x_{m}\right|<\epsilon$.

Exercise 6.4. Show that the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence.
Exercise 6.5. Show that if $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence and the set $M=\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$is finite then there is a term x_{k} of the sequence so that all the terms after the $x_{k}^{\text {th }}$ term is equal to x_{k}.

Definition. The sequence $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ is said to converge if it has a sequential limit point and to diverge if it does not.

If the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges then the sequential limit is denoted by

$$
\lim _{n \rightarrow \infty} x_{n}
$$

Theorem 6.6. If the sequence $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ converges, then it is a Cauchy sequence.

Theorem 6.7. If $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence, then it converges.
Exercise 6.6. Consider the following "Axiom" of the reals.
Axiom CC: Every Cauchy sequence converges.
Show that Axiom CC is equivalent to the least upper bound axiom.

