## Math 5200/6200, Dr. Smith Test Prep Exercises

Problem 1. Prove, from the definition of continuity, that the function $f(x)=$ $x^{3}$ is continuous at the point $(p, f(p))$.

Problem 2. Let $p>0$. First let $p$ be a fixed number and calculate the following limit:

$$
\lim _{h \rightarrow 0} \frac{(p+h)^{2}-p^{2}}{h}
$$

[An "educated" guess from your calculus class is fine.] Then let $L$ denote that limit and let $g(x)$ be defined as follows:

$$
g(x)=\left\{\begin{array}{cc}
\frac{(p+x)^{2}-p^{2}}{x} & \text { if } x \neq 0 \\
\text { if } x=0 .
\end{array}\right.
$$

Prove that the function $g$ is continuous at $x=0$.

Problem 3. Prove, from the definition, that the function $f(x)=x^{3}$ is uniformly continuous over the interval $[0,2]$.

Problem 4.Prove, from the definition, that the function $f(x)=\frac{1}{3 x^{2}+4}$ is continuous.

Problem 4. Prove, from the definition, that the function $f(x)=\sqrt{x}$ is continuous at $(4,2)$.

Problem 5. For each integer $n$ let

$$
f_{n}=2 x+\left(\frac{x}{3}\right)^{n} .
$$

Show:
a. That the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of functions approach a function $g$ pointwise over $[0,3]$.
b. That $g$ is not continuous at $x=3$.
c. That $\left\{f_{n}\right\}_{n=1}^{\infty}$ approaches $g$ uniformly over the interval $[0,2]$.

General Problems: Proofs of some of the theorems or lemmas proven in class.

