## Anotes07 Uniform continuity; uniform convergence.

Definition. Suppose that  $M \subset R$ . Then the function  $f: M \to \mathbb{R}$  is said to be uniformly continuous over its domain means that if  $\epsilon > 0$  is a positive number then there is a positive number  $\delta$  so that  $|f(x) - f(y)| < \epsilon$  for all x, y so that  $|x - y| < \delta$ .

Exercise 7.1. Determine if the following functions are uniformly continuous over the indicated sets  ${\cal M}$ :

a.) 
$$f(x) = \frac{3x+1}{5}$$
  $M = \mathbb{R}$ 

b.) 
$$f(x) = x^2$$
  $M = [0, 2]$ 

$$c.) \quad f(x) = x^2 \qquad M = \mathbb{R}$$

d.) 
$$f(x) = \frac{1}{x}$$
  $M = [1, 3]$ 

e.) 
$$f(x) = \frac{1}{x}$$
  $M = (0,3)$ 

$$f.$$
)  $f(x) = \frac{1}{x^2+1}$   $M = \mathbb{R}$ 

Definition. Suppose that  $f_1, f_2, f_3, ...$  is a sequence of functions with common domain D. Then the sequence of functions is said to converge pointwise on the domain D to the function f if and only if for each  $p \in D$ , f(p) is the sequential limit of the sequence  $\{f_i(p)\}_{i=1}^{\infty}$ .

Observe that this means that if  $x \in D$  and  $\epsilon > 0$  then there exists an integer N so that if n > N then  $|f(x) - f_n(x)| < \epsilon$ . Observe also, as indicated in class, that the value of N may depend on x.

Definition. Suppose that  $f_1, f_2, f_3, ...$  is a sequence of functions with common domain D. Then the sequence of functions is said to converge uniformly on the domain D to the function f if and only if for each  $\epsilon > 0$ , there exists an integer N so that if n > N then  $|f(x) - f_n(x)| < \epsilon$  for all  $x \in D$ .

- Exercise 7.2. Show that pointwise convergence is different from uniform convergence by finding a sequence of functions that does one but not the other.
- Exercise 7.3. Show that if the sequence  $f_1, f_2, f_3, ...$  converges uniformly to f then it converges pointwise to f.
- Exercise 7.4. Show that the sequence of functions  $f_n = \frac{x+1}{n}$  converges uniformly to the function f(x) = 0 on the interval [0, 2].
- Theorem 7.1. If  $f_1, f_2, f_3, ...$  is a sequence of continuous functions with common domain the interval I that converges uniformly, then this sequence of functions converges to a continuous function.

## Exercise 7.5.

- a. Find a sequence of discontinuous functions that converges pointwise to a continuous function.
- b. Find a sequence of discontinuous functions that converges uniformly to a continuous function.
- Theorem 7.2. Suppose that f is continuous on the interval [a, b]. Then f is bounded on [a, b]. (By which is meant that there is a number M so that |f(x)| < M for all  $x \in [a, b]$ .)
- Theorem 7.3. Suppose that f is continuous on the interval [a, b]. Then f is uniformly continuous.
- Theorem 7.4. Suppose that f is continuous on the compact set M. Then f is bounded on M.
- Theorem 7.5. Suppose that f is continuous on the compact set M. Then f is uniformly continuous on M.