Axioms of the integers \mathbb{Z} .

The word "integer" is our undefined term (sometimes referenced as the "primitive" term) for this section. The set \mathbb{Z} is the set of all integers (Axiom D3 implies that \mathbb{Z} has at least two elements, so I am grammatically correct in using the plural). The set \mathbb{Z} satisfies the following axioms.

The usual rules (axioms) of logic are to be used to prove theorems from these axioms. As needed these rules will be discussed and stated. As a first such, following are the properties of the equality symbol.

- i.) [Reflexive] x = x for all x.
- ii.) [Symmetric] If x = y then y = x.
- iii.) [Transitive] If x = y and y = z then x = z.
- iv.) [Uniqueness of function values] If f is a function and x = y then f(x) = f(y).

Axioms about addition and multiplication: There exists two operations on the integers: addition denoted by "+" and multiplication denoted by "·". [Strictly speaking "+" is a map from the cross product of the integers with itself into the integers with certain properties as defined by the axioms, and similarly for multiplication "·".] Note that $a \cdot b$ is usually written as ab. It is this functional definition and properties of the = symbol that yields the following (axioms) which will be needed for proofs and for which you may assume as part of our logic system.

```
If a = b and c = d then a + c = b + d.
```

If
$$a = b$$
 and $c = d$ then $a \cdot c = b \cdot d$.

[Observation: the symbols \wedge and \vee also satisfy these properties.]

Axioms about addition.

A1. If
$$a \in \mathbb{Z}$$
 and $b \in \mathbb{Z}$ then $a + b \in \mathbb{Z}$. [Closure.]

A2. If
$$a \in \mathbb{Z}$$
 and $b \in \mathbb{Z}$ then $a + b = b + a$. [Commutativity.]

A3. If
$$a \in \mathbb{Z}$$
, $b \in \mathbb{Z}$ and $c \in \mathbb{Z}$ then $a + (b + c) = (a + b) + c$. [Associativity.]

- A4. There exists an element $0 \in \mathbb{Z}$ so that if $a \in \mathbb{Z}$ then a + 0 = a. [Additive Identity element.]
- A5. If $a \in \text{then there exits an element in } \mathbb{Z}$ denoted by -a so that -a + a = 0. [Additive inverse.]

Definition: a - b means a + (-b).

Axioms about multiplication.

- B1. If $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ then $a \cdot b \in \mathbb{Z}$. [Closure.]
- B2. If $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ then $a \cdot b = b \cdot a$. [Commutativity.]
- B3. If $a \in \mathbb{Z}$, $b \in \mathbb{Z}$ and $c \in \mathbb{Z}$ then $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. [Associativity.]
- B4. There exists an element $1 \in \mathbb{Z}$ so that if $a \in \mathbb{Z}$ then $a \cdot 1 = a$. [Multiplicative Identity element.]
- B5. If $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, $c \in \mathbb{Z}$ with $c \neq 0$ and ac = bc then a = b. [Cancellation rule.]

Axiom on the relationship between addition and multiplication.

C1. If $a \in \mathbb{Z}$, $b \in \mathbb{Z}$ and $c \in \mathbb{Z}$ then $a \cdot (b+c) = a \cdot b + a \cdot c$. [Distributive law.] (Note the assumption that the order of operation is to perform \cdot first then +. In other words ab + cd means (ab) + (cd).)

Axioms on order.

There exists an order relation "<" so that:

D1. If each of a and b is an integer then exactly one of the following is true:

$$a < b$$
, $a = b$, $b < a$.

D2. If each of a, b and c is an integer a < b and b < c, then a < c.

D3. 0 < 1.

D4. If each of a, b and c is an integer and a < b, then a + c < b + c.

D5. If each of a, b and c is an integer a < b and 0 < c, then $a \cdot c < b \cdot c$.

Definition. The integer p is said to be positive if and only if 0 < p; $\mathbb{N} = \{n \in \mathbb{Z} | 0 < n\}$.

D6. If n is an integer then exactly one of the following is true [Trichotomy Law.]:

$$n \in \mathbb{N}, \quad n = 0, \quad -n \in \mathbb{N}.$$

Notation: The statement a > b means that b < a.

Induction axiom.

E1. Suppose that S is a subset of $\mathbb N$ containing 1 such that if $n \in S$ then $n+1 \in S$. Then $S=\mathbb N$.

An alternate, but equivalent, statement of the induction axiom is the following:

E1'. If S is a non-empty subset of \mathbb{N} , then S has a least element.

Strictly speaking, the positive integers \mathbb{N} is defined inductively as follows:

$$1 \in \mathbb{N} \tag{1}$$

if
$$n \in \mathbb{N}$$
 then $n+1 \in \mathbb{N}$ (2)

and \mathbb{N} is the minimal set satisfying conditions (1) and (2) above.

Then axiom E1 tells us that anything satisfying conditions (1) and (2) is \mathbb{N} .