
Math 5200 Review of the rational numbers.
Constructing the rationals from the integers.

Since we will be using the properties of the integers for our construc-
tion, you may only use the axioms of the integers and the definition of the
equivalence relation.

As a 5200 student, should be able to prove all the theorems stated below.
[Hint: Although it is not necessary, it may be helpful in formulating

proofs, for you to remember about how the elements of Q are related to
the rational numbers as you learned about them in grammar school: the
equivalence class [(a, b)] corresponds to the fraction a

b
.]

As usual Z is the set of integers. We will be working with the set Z×(Z−
{0}); this is the set of all integer pairs whose second element is non-zero. We
define an equivalence relation ∼ on Z× (Z− {0}).

Definition. Let S = Z× (Z− {0}). Define ∼ on S as follows:

(a, b) ∼ (c, d) if and only if ad = bc.

Theorem 0.1. The relation ∼ is an equivalence relation on S.

Proof Outline. We need to show that the relation ∼ satisfies the conditions
for being an equivalence relation.

1.) Reflexive: This means that (a, b) ∼ (a, b) and is easy.

2.) Symmetric: This one is easy too; write down what (a, b) ∼ (c, d)
means and what (c, d) ∼ (a, b) means and compare.

3.) Transitive: This is the tricky one. Given (a, b) ∼ (c, d) and (c, d) ∼
(e, f) we want to conclude that (a, b) ∼ (e, f). Let’s “translate” using the
definition:

Given ad = bc and cf = de we want to conclude that af = be. Now if
we were in the reals it would be easy; solve the second equation for d and
substitute into the first and do the algebra. But this involves division and we
don’t have division for the integers. Recall that the cancellation rule can be
sometimes used in place of division and use that to complete the proof.
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Notation. The symbol Q will be used to denote the collection of equiva-
lence classes: {[(a, b)] |a, b ∈ Z, b 6= 0}.

Exercise 0.1. Determine list four or five elements of each of the following
equivalence class:

a.) [(0, 1)]

b.) [(2, 1)]

c.) [(1, 2)]

d.) [(2, 3)]

e.) [(3, 2)]

f.) [(1, 1)]

g.) [(−1, 3)]

h.) [(1,−3)].

Definition. The operations + and · are defined as follows:

[(a, b)] + [(c, d)] =
[
(ad + bc, bd)

]
[(a, b)] · [(c, d)] =

[
(ac, bd)

]
.

[Comment: The + on the right operates on elements of S whereas the one
on the left operates on integers; this shouldn’t cause any confusion since
the plus signs will always be between the same type of elements. It’s sort
of like, when you were in 2660 you saw the instructor use the symbol · to
indicate multiplication of matrices even though they also used it to indicate
multiplication of numbers. If I am concerned that there may be the possibility
of confusion, I will denote the operations on Q as +∼ and ·∼. ]

Theorem 0.2. The operations +∼ and ·∼ are well-defined.

Exercise 0.2. The operation ⊕ defined as follows is not well-defined.

[(a, b)]⊕ [(c, d)] = [(a + c, b + d)].
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Theorem 0.3. There exist additive and multiplicative identities associated
with the operations of addition + and multiplication · on Q.

Theorem 0.4. The A, B and C axioms of the integers are satisfied by Q.
[Most of these will be straight forward, the existence of the multiplicative
and additive identities is claimed by theorem 0.3; given [(a, b)] you will have
to determine its additive inverse. This is really 11 theorems in 1, one for
each axiom.]

Theorem 0.5 A. If [(a, b)] ∈ Q then [(a, b)] has an additive inverse.

Theorem 0.5 B. If [(a, b)] 6= [(0, 1)] then [(a, b)] has a multiplicative in-
verse.

Theorem 0.6. Let ϕ : (Z,+.)→ (Q,+∼, ·∼) be defined as follows:

ϕ(n) = [n, 1].

Then ϕ is a homomorphism with respect to both addition + and +∼ and
multiplication · and ·∼ operators.
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