Homework Exercise Math 5210.
Due Monday November 18, 2019.

Define the function f : R — R as follows:
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Prove the following two claims.

(A.) The function f is differentiable at z = 0.

Proof. The derivative at 0 turns out to be zero (recall my picture on the
blackboard). So, with the plan of using the limit definition: let € > 0 and let
d > 0 be such that § < e. Then (for p = 0) if |h| < § we have:
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(B.) The derivative of f is not continuous.

Proof. For x # 0 we use the standard differentiation rules (product, chain,
quotient) to obtain:

fl(x) = 2wsin <1> + 22 cos (l)(_x—Q)
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We have the following limit calculation (which can be proven similarly to the
one calculated above):



Now we observe that:

And if the function f’ is continuous at 0 we would have lim,,_,., f’ ( ) =
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So lim,_,o f'(x) does not exist.



