Homework Exercise Math 5210.

Due Monday November 18, 2019.
Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove the following two claims.
(A.) The function f is differentiable at $x=0$.

Proof. The derivative at 0 turns out to be zero (recall my picture on the blackboard). So, with the plan of using the limit definition: let $\epsilon>0$ and let $\delta>0$ be such that $\delta<\epsilon$. Then (for $p=0$) if $|h|<\delta$ we have:

$$
\begin{aligned}
\left|\frac{f(p+h)-f(p)}{h}-f^{\prime}(p)\right| & =\left|\frac{h^{2} \sin \left(\frac{1}{h}\right)-0}{h}-0\right| \\
& =\left|h \sin \left(\frac{1}{h}\right)\right| \\
& \leq|h|<\delta<\epsilon
\end{aligned}
$$

(B.) The derivative of f is not continuous.

Proof. For $x \neq 0$ we use the standard differentiation rules (product, chain, quotient) to obtain:

$$
\begin{aligned}
f^{\prime}(x) & =2 x \sin \left(\frac{1}{x}\right)+x^{2} \cos \left(\frac{1}{x}\right)\left(-x^{-2}\right) \\
& =2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)
\end{aligned}
$$

We have the following limit calculation (which can be proven similarly to the one calculated above):

$$
\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0
$$

Now we observe that:

$$
\lim _{n \rightarrow \infty} \frac{1}{n \pi}=0
$$

And if the function f^{\prime} is continuous at 0 we would have $\lim _{n \rightarrow \infty} f^{\prime}\left(\frac{1}{n \pi}\right)=$ $f^{\prime}(0)$. But

$$
\lim _{n \rightarrow \infty, n \in \operatorname{even}} \cos \frac{1}{\frac{1}{n \pi}}=1
$$

And

$$
\lim _{n \rightarrow \infty, n \in \operatorname{odd}} \cos \frac{1}{\frac{1}{n \pi}}=-1
$$

So $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist.

