Hand-in Homework Exercise Math 5210. Due Friday November 22, 2019.

Define the function $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f(x)= \begin{cases}\frac{1}{3} & \text { if } 0 \leq x<\frac{1}{2} \\ x & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

The exercise is in two parts:
Part 1: Prove that the function is integrable over $[0,1]$.
Part 2: Use an $\epsilon-\delta$ definition of a limit that calculates the integral.
For part 1 I gave the following lemma in class that you may assume and use to prove that the integral exists:

Lemma 1. The function f is integrable over the interval $[a, b]$ if and only if for each $\epsilon>0$ there exists a δ so that if $P=\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{0}, q_{1}, q_{2}, \ldots, q_{m}\right\}$ are partitions of $[a, b]$ so that $\operatorname{mesh}(P)<\delta$ and $\operatorname{mesh}(Q)<\delta$ then for any selections c and d (where $c_{i} \in\left[p_{i-1}, p_{i}\right]$ and $d_{i} \in$ $\left.\left[q_{i-1}, q_{i}\right]\right)$ we have:

$$
\left|\sum_{i=1}^{n} f\left(c_{i}\right)\left(p_{i}-p_{i-1}\right)-\sum_{j=1}^{m} f\left(d_{j}\right)\left(q_{j}-q_{j-1}\right)\right|<\epsilon .
$$

I realized after a discussion with a couple of students after class that the following lemma (which follows from exercises 10.2.3-10.2.5) might be a more familiar one to use based on Dr. Kilgore's notes. See formulas (10.2) and (10.3) for the definitions of $L(P)$ and $U(P)$ for a partition P.

Lemma 2. The function f is integrable over the interval $[a, b]$ if and only if for each $\epsilon>0$ there exists a δ so that if $P=\left\{p_{0}, p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a partition so that $\operatorname{mesh}(P)<\delta$ then we have:

$$
|U(P)-L(P)|<\epsilon
$$

To do part 1 you may use either of these lemmas without proving them.

For part 2 The following formula will be helpful (or needed):

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

