## Useful Limit Theorems.

Reminder: In the following assume all functions have domain some open set and range a subset of the reals. Assume also that each formula is welldefined (e.g. $p$ is in the common domain where required.) [There are similar theorems for sequential limits.]

Definition. Suppose $f: U \rightarrow \mathbb{R}$ is a function and $p$ is a number in the domain of $f$. Then

$$
\lim _{x \rightarrow p} f(x)=L
$$

means that if $\epsilon>0$ then there exists a number $\delta$ so that

$$
|f(x)-L|<\epsilon
$$

for all $x$ so that

$$
0<|x-p|<\delta
$$

In the following theorems assume all functions have the number $p$ in their domains.

Theorem L1.

$$
\lim _{x \rightarrow p}(f(x)+g(x))=\lim _{x \rightarrow p} f(x)+\lim _{x \rightarrow p} g(x) .
$$

Theorem L2. If $c$ is a constant then

$$
\lim _{x \rightarrow p}(c f(x))=c \lim _{x \rightarrow p} f(x)
$$

Theorem L3.

$$
\lim _{x \rightarrow p}(f(x) \cdot g(x))=\lim _{x \rightarrow p} f(x) \cdot \lim _{x \rightarrow p} g(x)
$$

Theorem L4. If

$$
\lim _{x \rightarrow p} f(x) \neq 0
$$

then

$$
\lim _{x \rightarrow p} \frac{1}{f(x)}=\frac{1}{\lim _{x \rightarrow p} f(x)}
$$

