The Derivative.

Reminder: If $D \subset R$ then $\operatorname{Int}(D)$ denotes the set to which x belongs if and only if there is an open set U so that $x \in U \subset D$.

Definition. Suppose that $f: D \rightarrow \mathbb{R}$ is a function and $p \in \operatorname{Int}(D)$. Then f is said to be differentiable at p means that there exists a number m so that

$$
\lim _{h \rightarrow 0} \frac{f(p+h)-f(p)}{h}=m .
$$

The number m is called the derivative of f at the point p and m is denoted by $f^{\prime}(p)$.

Theorem 1.1. If the function f is differentiable at the point p then it is continuous at the point p.

Question. Is the converse of Theorem 1.1 true?
Theorem 1.2 A. The function $f: D \rightarrow \mathbb{R}$ is differentiable at the point p if and only if:

$$
\lim _{x \rightarrow p} \frac{f(p)-f(x)}{p-x}=f^{\prime}(p) .
$$

Theorem 1.2 B [The geometric picture of the derivative]. Suppose that $f: D \rightarrow \mathbb{R}$ is a function and $p \in \operatorname{Int}(D)$. Then f is differentiable at p if and only it there exists a number m so that if U is an open set containing $f(p)$ and α is a line containing $(p, f(p))$ with slope less than m and β is a line containing $(p, f(p))$ with slope bigger than m then there is an open set V containing p so that if $x \in V-\{p\}$ then $f(x)$ lies between α and β. Furthermore $m=f^{\prime}(p)$.

Theorems 1.3. Suppose that f and g are functions whose domains contain p in their interiors, c is the constant function and all the quantities in the following formulas are defined. Then:

$$
\begin{equation*}
c^{\prime}(p)=0 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
(c f)^{\prime}(p) & =c f^{\prime}(p) \tag{2}\\
(f+g)^{\prime}(p) & =f^{\prime}(p)+g^{\prime}(p) \tag{3}\\
(f g)^{\prime}(p) & =f^{\prime}(p) g(p)+f(p) g^{\prime}(p) \tag{4}\\
\left(\frac{1}{f}\right)^{\prime}(p) & =-\frac{f^{\prime}(p)}{(f(p))^{2}} \tag{5}\\
(f \circ g)^{\prime}(p) & =f^{\prime}(g(p)) g^{\prime}(p) \tag{6}
\end{align*}
$$

Theorem 1.4. Suppose that $r \in R$ and f is defined by $f(x)=x^{r}$. Then $f^{\prime}(x)=r x^{r-1}$.
[Hint: Prove versions of the theorem for the following cases:
(i.) $r \in \mathbb{N}$;
(ii.) $r \in \mathbb{Z}$;
(iii.) $\frac{1}{r} \in \mathbb{Z}, r \neq 0$;
(iv.) $r \in \mathbb{Q}$;
(v.) $r \notin \mathbb{Q}$.]

Theorem 1.5 (Rolle's theorem, Relative Max/Min theorem). Suppose that f is a function that is differentiable at p and that there is an open set V containing p so that $f(x) \leq f(p)$ for all $x \in V$. Then $f^{\prime}(p)=0$.

Lemma to Theorem 1.5. If $f:[a, b] \rightarrow \mathbb{R}$ is a function, $a<p<b$ and $f^{\prime}(p) \neq 0$, then if $\delta>0$ there is a point $q \in(p-\delta, p+\delta)$ so that $f(q)>f(p)$.

Theorem 1.5B (Rolle's theorem, Relative Max/Min theorem). Suppose that f is a function that is differentiable at p and that there is an open set V containing p so that $f(x) \geq f(p)$ for all $x \in V$. Then $f^{\prime}(p)=0$.

Corollary to Theorem 1.5. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function that is differentiable at each point of (a, b). Then there is a point p between a and b so that $f^{\prime}(p)=0$.

Question. If f is differentiable at each point of a segment (a, b) then must f be continuous on (a, b).

Theorem 1.6 (Mean value theorem). Suppose that f is continuous on the interval $[a, b]$ and is differentiable at each point of the segment (a, b). Then
there is a point c between a and b so that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 1.7 (Intermediate value theorem for derivatives). Suppose that f is differentiable on the interval $[a, b]$ and m is between $f^{\prime}(a)$ and $f^{\prime}(b)$. Then there is a point z between a and b so that $f^{\prime}(z)=m$.

