The R-integral

Definition. Let $[a, b]$ be an interval. Then S is a subdivision of $[a, b]$ means that S is a finite increasing sequence $\left\{x_{i}\right\}_{i=0}^{n}$ so that $a=x_{0}<x_{1}<$ $x_{2}<\cdots<x_{n-1}<x_{n}=b$.

Definition. If $S=\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of the interval $[a, b]$ then $\operatorname{mesh}(S)=\sup \left\{\left(x_{i}-x_{i-1}\right) \mid 0<i \leq n\right\}$.

Definition. Suppose that $[a, b]$ is an interval and $f:[a, b] \rightarrow \mathbb{R}$ is a function. Then f is integrable over the interval $[a, b]$ means that there is a number I so that if $\epsilon>0$ is a positive number, then there exists a positive number $\delta>0$ so if $S=\left\{x_{i}\right\}_{i=1}^{n}$ is a subdivision of $[a, b]$ with $\operatorname{mesh}(S)<\delta$ and for each $i, x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ then

$$
\left|\sum_{i=1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-I\right|<\epsilon .
$$

The number I is called the integral of the function f over the interval $[a, b]$ and it is denoted by

$$
\int_{a}^{b} f(x) d x \text { or } \int_{[a, b]} f .
$$

We will use both notations.

Exercise 2.0. (a.) Show that the number I in the definition of the integral is unique.
(b.) Show that if f is integrable on $[a, c]$ and $a<b<c$ then f is integrable on $[a, b]$.

Theorem 2.1. If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function, then it is integrable over the interval $[a, b]$.

Exercise 2.1. In the following exercises the function f is defined for a particular interval $[a, b]$. Determine from the definition if $\int_{[a, b]} f$ exists and if it does, determine its value.

$$
\begin{array}{ll}
\text { a.) } f(x)=1, & x \in[a, b] . \\
\text { b.) } & f(x)=x, \\
\text { c.) } & f(x)=x^{2}, \\
\text { d.) } \quad f= \begin{cases}1 & \text { if } 0 \leq x \in[0,1] . \\
3 & \text { if } 1 \leq x \leq 2\end{cases} & x \in[0,2] . \\
\text { e.) } \quad f= \begin{cases}0 & \text { if } x=0 \\
\frac{1}{x} & \text { if } 0<x \leq 1\end{cases} & x \in[0,1] . \\
\text { f.) } & f=\left\{\begin{array}{lll}
0 & \text { if } x \text { is rational } \\
1 & \text { if } x \text { is irrational }
\end{array}\right. \\
\text { de } &
\end{array}
$$

Exercise 2.2. If f is integrable over the interval $[a, b]$ then:

$$
\int_{[a, b]} f=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right) \frac{b-a}{n} .
$$

Is the converse true (i.e. if the limit on the right exists then is f integrable)?
Notation: If $b<a$ then $\int_{[a, b]} f=-\int_{[b, a]} f ; \int_{a}^{a} f(x) d x=0$.
Theorem 2.2. Suppose that f and g are continuous functions whose domains include the intervals over which they are integrated, c is the constant function and all the quantities in the following formulas are defined. Then:

$$
\begin{align*}
\int_{a}^{b} c f(x) d x & =c \int_{a}^{b} f(x) d x \tag{1}\\
\int_{a}^{b} f(x)+g(x) d x & =\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \tag{2}\\
\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x & =\int_{a}^{c} f(x) d x \tag{3}
\end{align*}
$$

Theorem 2.3. Suppose that f and g are continuous functions whose domains include the interval $[a, b]$ and that $f(x) \leq g(x)$. Then
a. $\int_{[a, b]} f \leq \int_{[a, b]} g$.
b. If there is a value $c \in[a, b]$ so that $f(c)<g(c)$ then $\int_{[a, b]} f<\int_{[a, b]} g$.

Theorem 2.4. Suppose that f is a continuous function whose domain includes the interval $[a, b]$ and that for each number $a \leq x \leq b$ we define $F(x)=\int_{[a, x]} f$. Then
a. F is continuous for each $x \in[a, b]$;
b. F is differentiable for each $x \in[a, b]$;
c. [The fundamental theorem of calculus.] $F^{\prime}(t)=f(t)$ for each $t \in[a, b]$.

Theorem 2.5. Suppose that f is a continuous function whose domain includes the interval $[a, b]$ then there exists a number c with $a<c<b$ so that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

Exercise 2.3. Suppose that f and g are continuous functions whose domains include the interval $[a, b], a<c<b$ and the function h is defined by:

$$
h(x)= \begin{cases}f(x) & \text { if } a \leq x<c \\ g(x) & \text { if } c \leq x \leq b .\end{cases}
$$

Then h is integrable over $[a, b]$ and $\int_{[a, b]} h=\int_{[a, c]} f+\int_{[c, b]} g$.

