Integrability, Lemmas and Hints

Theorem 2.1b: Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a function. If the function f is R-integrable, then it is bounded.

Hint: If f is not bounded over $[a, b]$ then there exists a number $c \in[a, b]$ so that if B is a number and $\delta>0$ then there is a point $x \in(c-\delta, c+\delta)$ so that $|f(x)|>B$.

Definition: Let S be a subdivision with $S:\left\{a=x_{0}<x_{1}<x_{2}<\ldots<\right.$ $\left.x_{n-1}<x_{n}=b\right\}$ and let f be a function. For this particular subdivision S and function f, define for each i,

$$
\begin{aligned}
y_{i}^{m} & =\operatorname{glb}\left\{f\left(x_{i}^{*}\right) \mid x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]\right\} \\
y_{i}^{M} & =\operatorname{lub}\left\{f\left(x_{i}^{*}\right) \mid x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]\right\}
\end{aligned}
$$

Then for the function f define

$$
\begin{aligned}
& \operatorname{Lower} \operatorname{Sum}(S, f)=\sum_{i=1}^{n} y_{i}^{m}\left(x_{i}-x_{i-1}\right) \\
& \operatorname{Upper} \operatorname{Sum}(S, f)=\sum_{i=1}^{n} y_{i}^{M}\left(x_{i}-x_{i-1}\right)
\end{aligned}
$$

Lemma 2.2b. Let S be a subdivision with $S:\left\{a=x_{0}<x_{1}<x_{2}<\ldots<\right.$ $\left.x_{n-1}<x_{n}=b\right\}$ and let $f:[a, b] \rightarrow \mathbb{R}$. Then f is R-integrable over $[\mathrm{a}, \mathrm{b}]$ if and only if it is true that if $\epsilon>0$ then there exists a number $\delta>0$ so that if S is a subdivision of $[a, b]$ with mesh less than δ then

$$
\operatorname{Upper} \operatorname{Sum}(S, f) \text { - Lower } \operatorname{Sum}(S, f)<\epsilon
$$

Hint: For each $n \in \mathbb{N}$ let S_{n} be a subdivision of $[a, b]$ with $\operatorname{mesh}\left(S_{n}\right)<\frac{1}{n}$. Argue that the sequential limit of $\left\{\operatorname{Lower} \operatorname{Sum}\left(S_{n}, f\right)\right\}_{n=1}^{\infty}$ is $\int_{[a, b]} f$. (And observe that $\left\{\operatorname{Upper} \operatorname{Sum}\left(S_{n}, f\right)\right\}_{n=1}^{\infty}$ also converges to $\int_{[a, b]} f$.)

Lemma 2.3b. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous then f satisfies the hypothesis of Lemma 2.2b.

Hint: Use the uniform continuity theorem.
Claim: Lemmas 2.2b and 2.3b imply Theorem 2.1.

Lemma 2.4b. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $g:[b, c] \rightarrow \mathbb{R}$ is continuous and h is defined as follows:

$$
h(x)=\left\{\begin{array}{cc}
f(x) & \text { if } a \leq x<b \\
d & \text { if } x=b \\
g(x) & \text { if } b<x \leq c
\end{array}\right.
$$

