Exercises on Bounded Variation

Exercise 1. Calculate $V_{0}^{x} f$ for each of the following functions f :
(a) $f(x)=(x-1)^{2}$;
(b) $f(x)=x(x-1)(x-2)$;
(c) (d) $g(x)= \begin{cases}2 x & \text { if } x \leq 1 \\ 3 x & \text { if } 1<x .\end{cases}$

Exercise 2. For each of exercises a-d below, calculate $\int_{0}^{2} f d g$ for (i) $f=5 x$ and for (ii) $f=x^{2}$ where g is given below; then verify that your calculation is correct from the definitions:
(a) $g=x^{2}$;
(b) $g(x)= \begin{cases}0 & \text { if } x \leq 1 \\ 1 & \text { if } 1<x ;\end{cases}$
(c) $g(x)= \begin{cases}0 & \text { if } x<1 \\ 1 & \text { if } 1 \leq x ;\end{cases}$
(d) $g(x)= \begin{cases}2 x & \text { if } x \leq 1 \\ 3 x & \text { if } 1<x .\end{cases}$

Exercise 3. Determine if the following function is (a) R-integrable over $[0,1]$, (b) of bounded variation over $[0,1]$:

$$
f(x)= \begin{cases}1 & \text { if } x=\frac{1}{n} \text { for } n \in \mathbb{Z}^{+} \\ 0 & \text { elsewhere }\end{cases}
$$

