Riemann-Stieltjes Integral

Definition. Let $\left\{f_{n}\right\}_{n=1}$ be a sequence of functions. Then the sequence of functions converges uniformly to the function f on the interval $[a, b]$ means that if $\epsilon>0$ is a positive number then there exists an integer N so that

$$
\left|f(x)-f_{n}(x)\right|<\epsilon \text { for all } n>N, x \in[a, b]
$$

Review exercise 4.1. Consider the sequence $f_{n}(x)=x^{n}$. Show that:
(a) the sequence does not converge uniformly on $[0,1]$;
(b) the sequence does converge uniformly on $\left[0, \frac{1}{2}\right]$;
(c) $\int_{0}^{1} f_{n}$ converges.

Background Theorem. Let $\left\{f_{n}\right\}_{n=1}$ be a sequence of continuous functions that converges uniformly to the function f on the interval $[a, b]$. Then f is continuous.

Theorem 4.1. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of continuous functions each of which is integrable over the interval $[a, b]$ that converges uniformly to the function f on the interval $[a, b]$. Then f is integrable over the interval $[a, b]$.

Exercise 4.1a. Under the hypothesis of Theorem 4.1, show that $\left\{\int_{a}^{b} f_{n}\right\}_{n=1}^{\infty}$ converges to $\int_{a}^{b} f$.

Exercise 4.1b. Suppose that the hypothesis of Theorem 4.1 is changed as follows:

Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions each of which is integrable over the interval $[a, b]$ that converges uniformly to the function f on the interval $[a, b]$. Then is f integrable over the interval $[a, b]$? What if the additional condition that each f_{n} be increasing is added?

Exercise 4.2. Show that if "integrable" is replaced with "differentiable" in Theorem 4.1, then it is not a theorem. I.e. find a sequence of differentiable functions that converges uniformly to a non-differentiable function.

Definition. Suppose that $[a, b]$ is an interval and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function and $g:[a, b] \rightarrow \mathbb{R}$. Then f is integrable over the interval $[a, b]$ with respect
to the function g means that there is a number I so that if $\epsilon>0$ is a positive number, then there exists a positive number $\delta>0$ so that if $S=\left\{t_{i}\right\}_{i=1}^{n}$ is a subdivision of $[a, b]$ with $\operatorname{mesh}(S)<\delta$ and for each $i, t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$ then

$$
\left|\sum_{i=1}^{n} f\left(t_{i}^{*}\right)\left(g\left(t_{i}\right)-g\left(t_{i-1}\right)\right)-I\right|<\epsilon .
$$

Notation: The number I in the definition is denoted by $\int_{[a, b]} f d g$ or by $\int_{a}^{b} f d g$.

Exercise 4.3. Let $f(x)=5$ let $g(x)=x^{2}$. Calculate $\int_{0}^{1} f d g$ and show from the definition that your calculation is correct.

Hint:

$$
x_{i}^{2}-x_{i-1}^{2}=\left(x_{i}+x_{i-1}\right)\left(x_{i}-x_{i-1}\right) .
$$

Exercise 4.3b. Let g be defined as follows:

$$
g(x)= \begin{cases}1 & \text { if } x \leq 1 \\ 3 & \text { if } 1<x\end{cases}
$$

Calculate $\int_{0}^{2} f d g$ for the following functions f :
i) $f(x)=x$;
ii.) $f(x)=x^{2}$;
iii.) f is continuous;
iv.) $f=g$.
v.) repeat i- iv with g defined as follows:

$$
g(x)=\left\{\begin{array}{cc}
x & \text { if } x \leq 1 \\
x+1 & \text { if } 1<x
\end{array}\right.
$$

Exercise 4.3c. Let $g(x)=x^{2}$. Calculate $\int_{0}^{1} f d g$ for the following functions f and show from the definition that your calculation is correct.

$$
\begin{aligned}
(i .) & =f(x)=5 x \\
(i i .) & =f(x)=5 x^{2} .
\end{aligned}
$$

Theorem 4.2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and $g:[a, b] \rightarrow \mathbb{R}$ is a non-decreasing function then f is integrable with respect to g over $[a, b]$.

Furthermore, under suitable conditions:

$$
\int_{a}^{b} f d g=\int_{a}^{b} f g^{\prime} d x
$$

[Hint/Exercise: See if you can prove Theorem 4.2 under the special condition that f is a constant and g is increasing.]

Theorem 4.3. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ and $\left\{g_{n}\right\}_{n=1}^{\infty}$ be a sequences of continuous functions that converge uniformly to the functions f and g respectively on the intervals $[g(a), g(b)]$ and $[a, b]$ respectively. Then, under suitable hypothesis, (e.g. all the functions involved have continuous derivatives, though some are true under less restrictive hypothesis, the domains of the f_{n} 's match the ranges of the g_{n} 's):
a. $\left\{\int_{a}^{b} f_{n} d g_{n}\right\}_{n=1}$ converges to $\int_{a}^{b} f d g$.
b. Let $F_{n}(x)=\int_{a}^{x} f_{n}(x) d x$ and $F(x)=\int_{a}^{x} f(x) d x$ then $\left\{F_{n}\right\}_{n=1}^{\infty}$ converges uniformly to the functions F on $[a, b]$.

Helpful reminders and observations.
Definition. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is called a Cauchy sequence if and only if whenever $\epsilon>0$ there is an integer N so that if $n, m>N$ then

$$
\left|x_{n}-x_{m}\right|<\epsilon
$$

Background theorem. If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence then it converges.
If the function f is not continuous then there may not be a point in an interval where the function attains it's maximum. However, an application of the lub property should yield the following.

Lemma. Suppose that f is integrable over $[a, b], S=\left\{t_{i}\right\}_{i=1}^{n}$ is a subdivision and B_{i} denotes the least upper bound of $\left\{f(x) \mid x \in\left[t_{i-1}, t_{i}\right]\right\}$. Then there
is a positive number δ so that if S is a subdivision of $[a, b]$ with $\operatorname{mesh}(S)<\delta$ then

$$
\left|\sum_{i=1}^{n} B_{i}\left(t_{i}-t_{i-1}\right)-\int_{a}^{b} f\right|<\epsilon
$$

