Power Series

Definition. Suppose that $\left\{a_{i}\right\}_{i=1}^{\infty}$ is a sequence. Then

$$
\sum_{i=1}^{\infty} a_{i}=L
$$

means that the sequence of partial sums

$$
\left\{\sum_{i=1}^{n} a_{i}\right\}_{n=1}^{\infty}
$$

has sequential limit L. Such a series is said to converge; a series for which no such limit exists is said to diverge.

Theorem 5.1. Suppose that the series $\sum_{n=0}^{\infty} a_{n}$ converges. Then

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0
$$

Exercise. Show that the converse to Theorem 5.2 is not true.
Theorem 5.2. Let r be a number then, the series

$$
\sum_{n=0}^{\infty} r^{n}
$$

converges if and only if $|r|<1$. Furthermore, if $|r|<1$ then

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

Theorem 5.3. If the series $\sum_{n=0}^{\infty}\left|a_{n}\right|$ converges, then so does $\sum_{n=0}^{\infty} a_{n}$.
Exercise. Show that the converse to Theorem 5.3 is not true.
Definition. $\int_{K}^{\infty} f d g$ means the following limit if it exists:

$$
\lim _{n \rightarrow \infty} \int_{K}^{n} f d g
$$

Theorem 5.4 [The integral test]. Suppose that the function f is defined for all positive integers and that $\left.f\right|_{[K, \infty)}$ is defined and is positive and decreasing. Then $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\int_{K}^{\infty} f$ exists.

Theorem 5.5 [The comparison test]. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are two sequences so that $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$. Then:
1.) If $\sum_{n=1}^{\infty} b_{n}$ converges, then so does $\sum_{n=1}^{\infty} a_{n}$;
1.) If $\sum_{n=1}^{\infty=1} a_{n}$ diverges, then so does $\sum_{n=1}^{\infty} b_{n}$.

Theorem 5.6 [The limit comparison test]. Suppose that each of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ is a series of positive numbers and that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \neq 0
$$

Then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=1}^{\infty} b_{n}$ converges.
Exercise. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ then something still can be said about the relationship between the two series. What is that?

Theorem 5.7 [The ratio test]. Consider the series $\sum_{n=0}^{\infty} a_{n}$ and let

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

Then:

$$
\begin{aligned}
& \text { If } L<1 \text { then the series converges } \\
& \text { If } L>1 \text { then the series diverges. }
\end{aligned}
$$

Exercise. Let $\sum_{n=0}^{\infty} a_{n}$ be a series so that $a_{n}>0$ and suppose

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1
$$

(i.) Find an example where the series $\sum_{n=0}^{\infty} a_{n}$ converges;
(ii.) Find an example where the series $\sum_{n=0}^{\infty} a_{n}$ diverges.

Power Series

Theorem 5.8. Suppose that $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a sequence of numbers and

$$
\lim _{n \rightarrow \infty}\left|\frac{A_{n}}{A_{n+1}}\right|=r
$$

Then if $|x|<r$ the series $\sum_{n=1}^{\infty} A_{n} x^{n}$ converges.
For the following theorems assume that $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a sequence of numbers, $r<1$ is a number so that

$$
\lim _{n \rightarrow \infty}\left|\frac{A_{n}}{A_{n+1}}\right|=r
$$

and f is defined by

$$
f(x)=\sum_{n=0}^{\infty} A_{n} x^{n} \text { for }-r<x<r .
$$

Theorem 5.9. If $0<\delta<r$, then then sequence of functions $f_{n}=$ $\sum_{i=0}^{n} A_{i} x^{i}$ converges uniformly to the function f on the interval $[-\delta, \delta]$.

Theorem 5.10. If $0<x<r$, then

$$
\int_{0}^{x} f(t) d t=\sum_{n=0}^{\infty} A_{n} \frac{x^{n+1}}{n+1} .
$$

Theorem 5.11. If $0<x<r$, then

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} A_{n} n x^{n-1}
$$

