Hints on Integration Exercises and Theorems

Exercise 4.3c. Observe that

$$
\begin{aligned}
x_{i}^{2}-x_{i-1}^{2} & =\left(x_{i}+x_{i-1}\right)\left(x_{i}-x_{i-1}\right) \\
& =2 \frac{x_{i}+x_{i-1}}{2}\left(x_{i}-x_{i-1}\right) \\
& =2 c_{i}^{*}\left(x_{i}-x_{i-1}\right) .
\end{aligned}
$$

Now you've got an x^{*} and a c^{*}; figure out how to address that. Recall my short lecture today (Mar. 11) about this.

Mean Value Theorem Review Exercise.
If $f=r x^{2}$ for some constant r, then find the number $c \in[a, b]$ that satisfies the Mean Value Theorem (Thm. 1.5.) In other words the number c with $a<c<b$ so that:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 4.2.
First show that the integral exists. To do this, consider stating (and proving) a lemma similar to Theorem 3.3'. Do the special case of g increasing and continuous first.

Then to get the $\int f g^{\prime}$ formula use the mean value theorem.
Theorem 2.5.
This theorem now follows from some theorems we've already done: We know that F is continuous; that f attains it max and min values in an interval; and recall the intermediate value theorem.
Theorem 2.4c.
Observe that we didn't use theorem 2.4c to prove 2.5, but (possibly) only 2.4a. So try assuming 2.5.

Bounded Variation Exercise.
Let $f(x)=x(1-x)$. Conjecture: The function $f(x)+\mathcal{V}_{0}^{x} f$ is nondecreasing.

Lemma on Bounded Variation:
For a function $f:[a, b] \rightarrow \mathbb{R}$, if $x<y$ we have,

$$
\mathcal{V}_{a}^{y} f=\mathcal{V}_{a}^{x} f+\mathcal{V}_{x}^{y} f
$$

Theorem 4.5.
Examine the function:

$$
\mathcal{V}_{a}^{x} f+f(x)
$$

Theorem 4.7.
Argue that $\int f d\left(g_{1}+g_{2}\right)=\int f d g_{1}+\int f d g_{2}$ and consider previous theorems and exercises.

