More Integrability Exercises

Exercise 5. Show that the function defined in Exercise 2.1 e is not integrable. [Hint: show that for any number I there and any $\delta>0$ that there is a subdivision S with $\operatorname{mesh}(S)<\delta$ so that

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)>I
$$

And indicate why this is sufficient.]
Exercise 6. Show that if f is continuous over the interval $[a, b]$ then if $\epsilon>0$ there exists a $\delta>0$ so that if S is a subdivision with $\operatorname{mesh}(S)<\delta$ then:

$$
\operatorname{Upper} \operatorname{Sum}(S, f) \text { - Lower } \operatorname{Sum}(S, f)<\epsilon
$$

Exercise 7. Repeat Exercise 6 but with a (possibly discontinuous) increasing function define on the interval $[a, b]$.

Exercise 8.
Definition: If $S:\left\{a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b\right\}$ is a subdivision then the subdivision $T:\left\{a=t_{0}<t_{1}<t_{2}<\ldots<t_{m-1}<x_{m}=b\right\}$ is a refinement of S means that for each $i, 0 \leq i \leq n$ there is an integer j so that $t_{j}=x_{i}$.

Show that if the subdivision $T:\left\{a=t_{0}<t_{1}<t_{2}<\ldots<t_{m-1}<x_{m}=\right.$ $b\}$ is a refinement of the subdivision $S:\left\{a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<\right.$ $\left.x_{n}=b\right\}$, then

Lower $\operatorname{Sum}(S, f) \leq \operatorname{Lower} \operatorname{Sum}(T, f) \leq \operatorname{Upper} \operatorname{Sum}(T, f) \leq \operatorname{Upper} \operatorname{Sum}(S, f)$.

