Proof Of Integrability, Exercise 2.1d

Exercise: Let f be defined as follows:

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x<1 \\ 3 & \text { if } 1 \leq x \leq 2\end{cases}
$$

In order to prove integrability we need to find a number I so that if $\varepsilon>0$ then there exists $\delta>0$ so that for a subdivision S of mesh less than δ we have

$$
\begin{equation*}
\left|\sum_{i=1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-I\right|<\varepsilon \tag{1}
\end{equation*}
$$

where S is the subdivision $\left\{0=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=2\right\}$ and for each $i, x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. Our plan is as follows: split the sum into three pieces: (1) the sum over the intervals up to the one containing 1 , (2) the interval containing $1,(3)$ the sum over the intervals after the one containing 1.

So here's the proof:
Proof. First we need to calculate I, a quick examination (from what we learned in calculus) allows us to make the educated guess that $I=4$. Let $\varepsilon>0$ and (based on the scratch work done in class) we let δ be a positive number with $\delta<\frac{\varepsilon}{9}$. To complete the proof we will show that if S is the subdivision $\left\{0=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=2\right\}$ with mesh less than δ then equation (1) above holds. Suppose, then, that S is a subdivision of $[0,2]$ with mesh less than δ. Let k be the first integer so that $1 \in\left[x_{k-1}, x_{k}\right]$. (Note, I phrase it this way because there is a possibility that for some i, $x_{i}=1$; in that case 1 is in both $\left[x_{i-1}, x_{i}\right]$ and $\left[x_{i}, x_{i+1}\right]$. If $f(1)$ had been 1 instead of 3 I would have picked k to be the largest integer such that $1 \in\left[x_{k-1}, x_{k}\right]$.) So we will have:

$$
\left|\sum_{i=1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-4\right|=
$$

$$
\begin{array}{r}
\left|\sum_{i=1}^{k-1} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)+f\left(x_{k}^{*}\right)\left(x_{k}-x_{k-1}\right)+\sum_{i=k+1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-4\right|= \\
\left|\sum_{i=1}^{k-1} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-1+f\left(x_{k}^{*}\right)\left(x_{k}-x_{k-1}\right)+\sum_{i=k+1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-3\right| \leq \\
\left|\sum_{i=1}^{k-1} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-1\right|+\left|f\left(x_{k}^{*}\right)\left(x_{k}-x_{k-1}\right)\right|+\left|\sum_{i=k+1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-3\right|
\end{array}
$$

Let's look at each of these absolute values separately: The first one follows, and note that in this case $f\left(x_{i}^{*}\right)=1$ for all $1 \leq i \leq k-1$:

$$
\begin{aligned}
\left|\sum_{i=1}^{k-1} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-1\right| & =\mid f\left(x_{1}^{*}\right)\left(x_{1}-x_{0}\right)+f\left(x_{2}^{*}\right)\left(x_{2}-x_{1}\right)+\ldots \\
& +f\left(x_{k-2}^{*}\right)\left(x_{k-2}-x_{k-3}\right)+f\left(x_{k-1}^{*}\right)\left(x_{k-1}-x_{k-2}\right)-1 \mid \\
& =\mid 1\left(x_{1}-0\right)+1\left(x_{2}-x_{1}\right)+\ldots \\
& +1\left(x_{k-2}-x_{k-3}\right)+1\left(x_{k-1}-x_{k-2}\right)-1 \mid \\
& =\left|x_{k-1}-1\right| \leq \operatorname{mesh}(S)<\delta<\frac{\varepsilon}{9}
\end{aligned}
$$

The last line follows from the fact that $1 \in\left[x_{k-1}, x_{k}\right]$ and $x_{k}-x_{k-1} \leq$ $\operatorname{mesh}(S)<\delta$.

The second term gives us:

$$
\left|f\left(x_{k}^{*}\right)\left(x_{k}-x_{k-1}\right)\right| \leq 3\left(x_{k}-x_{k-1}\right) \leq 3 \operatorname{mesh}(S)<3 \delta<3 \frac{\varepsilon}{9}=\frac{\varepsilon}{3}
$$

The third term gives us:

$$
\begin{aligned}
\left|\sum_{k+1}^{n} f\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)-3\right| & =\mid f\left(x_{k+1}^{*}\right)\left(x_{k+1}-x_{k}\right)+f\left(x_{k+2}^{*}\right)\left(x_{k+2}-x_{k+1}\right)+\ldots \\
& +f\left(x_{n-1}^{*}\right)\left(x_{n-1}-x_{n-2}\right)+f\left(x_{n}^{*}\right)\left(x_{n}-x_{n-1}\right)-3 \mid \\
& =\mid 3\left(x_{k+1}-x_{k}\right)+3\left(x_{k+2}-x_{n+1}\right)+\ldots \\
& +3\left(x_{n-1}-x_{n-2}\right)+3\left(x_{n}-x_{n-1}\right)-3 \mid \\
& =\left|-3 x_{k}+3 x_{n}-3\right| \\
& =\left|-3 x_{k}+3-3+3 x_{n}-3\right| \\
& =\left|-3 x_{k}+3-3+3 \cdot 2-3\right| \\
& =\left|-3 x_{k}+3\right| \\
& =\left|3\left(1-x_{k}\right)\right| \\
& \leq 3 \operatorname{mesh}(S)<3 \delta<3 \frac{\varepsilon}{9}=\frac{\varepsilon}{3} .
\end{aligned}
$$

Therefore:

$$
\text { first term }+ \text { second term }+ \text { third term }<\frac{\varepsilon}{9}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}<\varepsilon
$$

Which is what was needed.

Exercises

Exercises: In each of the following exercises, show from the definition that the indicated function is integrable.

Exercise 1. Suppose that $a<c<b$ and e and d are positive numbers. Define

$$
f(x)= \begin{cases}e & \text { if } a \leq x<b \text { and } x \neq c \\ d & \text { if } x=c\end{cases}
$$

Exercise 2. Define

$$
f(x)=5 x
$$

Show, from the definition, that f is integrable over the interval $[2,5]$.
As a hint do the following:
Suppose that you are given a subdivision S of the interval $[2,5]$. Then what is the possible range of values for different choices of x_{i}^{*} for a subdivision of mesh δ. Fist consider the case where all the intervals are the same length: $x_{i}-x_{i-1}=\delta$.

Repeat the above in the case where the intervals of the subdivision have different lengths.

Exercise 3. Suppose that $a<c<b$ and e and d is a positive number. Define

$$
f(x)= \begin{cases}5 x & \text { if } a \leq x<b \text { and } x \neq c \\ d & \text { if } x=c\end{cases}
$$

Exercise 4. Potential lemma:
Suppose that S is a subdivision with $S:\left\{a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<\right.$ $\left.x_{n}=b\right\}$. If f is a function, for this particular subdivision and function f, then define for each i,

$$
\begin{aligned}
y_{i}^{m} & =\operatorname{glb}\left\{f\left(x_{i}^{*}\right) \mid x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]\right\} \\
y_{i}^{M} & =\operatorname{lub}\left\{f\left(x_{i}^{*}\right) \mid x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]\right\} .
\end{aligned}
$$

Then for the function f we define

$$
\begin{aligned}
& \operatorname{Lower} \operatorname{Sum}(S, f)=\sum_{i=1}^{n} y_{i}^{m}\left(x_{i}-x_{i-1}\right) \\
& \operatorname{Upper} \operatorname{Sum}(S, f)=\sum_{i=1}^{n} y_{i}^{M}\left(x_{i}-x_{i-1}\right) .
\end{aligned}
$$

Consider the function $f(x)=c x$ for some constant $c>0$; argue that if $a<b$ then if $\varepsilon>0$ there exists a number $\delta>0$ so that if S is a subdivision of $[a, b]$ with $\operatorname{mesh}(S)<\delta$ then

$$
\begin{equation*}
\operatorname{Upper} \operatorname{Sum}(S, f)-\operatorname{Upper} \operatorname{Sum}(S, f)<\varepsilon \tag{2}
\end{equation*}
$$

Is this enough to guarantee that f is integrable over $[a, b]$?

