\documentclass[12pt, std]{article} \usepackage{amsmath, amssymb, amsthm, amsfonts, amssymb, latexsym, hyperref, graphicx, color} \begin{document} \begin{center} \textbf{The R-integral} \end{center} \ Definition. Let $[a,b]$ be an interval. Then $S$ is a subdivision of $[a,b]$ means that $S$ is a finite increasing sequence $\{x_i\}_{i=0}^n$ so that $a=x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$. Definition. If $S = \{x_i\}_{i=0}^n$ is a subdivision of the interval $[a,b]$ then $\mbox{mesh}(S) = \sup\{(x_i - x_{i-1}) \ | \ 0 0$ is a positive number, then there exists a positive number $\delta > 0$ so if $S = \{x_i\}_{i=1}^n$ is a subdivision of $[a,b]$ with $\mbox{mesh}(S)<\delta$ and for each $i$, $x_i^* \in [x_{i-1}, x_i]$ then $$\Big{|}\sum_{i=1}^n f(x_i^*)(x_i - x_{i-1}) - I \Big{|} < \epsilon.$$ The number $I$ is called the integral of the function $f$ over the interval $[a,b]$ and it is denoted by $$\int_a^b f(x) dx \mbox{ or } \int_{[a,b]}f.$$ We will use both notations. \ Exercise 2.0. (a.) Show that the number $I$ in the definition of the integral is unique. (b.) Show that if $f$ is integrable on $[a,c]$ and $a