\documentclass[12pt, std]{article} \usepackage{amsmath, amssymb, amsthm, amsfonts, amssymb, latexsym, hyperref, graphicx, color} \begin{document} \begin{center} \textbf{Integrability, Lemmas and Hints} \end{center} \ Theorem 2.1b: Suppose that $f: [a,b] \rightarrow \mathbb{R}$ is a function. If the function $f$ is R-integrable, then it is bounded. \ Hint: If $f$ is not bounded over $[a,b]$ then there exists a number $c \in [a,b]$ so that if $B$ is a number and $\delta > 0$ then there is a point $x \in (c-\delta, c+\delta)$ so that $|f(x)| > B$. \ Definition: Let $S$ be a subdivision with $S: \{a=x_0< x_1 < x_2 < \ldots < x_{n-1} < x_n = b\}$ and let $f$ be a function. For this particular subdivision $S$ and function $f$, define for each $i$, \begin{eqnarray*} y_i^m & = & \mbox{glb}\{ f(x_i^*) \ | \ x_i^* \in [x_{i-1}, x_i] \} \\ y_i^M & = & \mbox{lub}\{ f(x_i^*) \ | \ x_i^* \in [x_{i-1}, x_i] \}. \end{eqnarray*} Then for the function $f$ define \begin{eqnarray*} \mbox{Lower Sum}(S, f) & = & \sum_{i=1}^n y_i^m(x_i - x_{i-1}) \\ \mbox{Upper Sum}(S, f) & = & \sum_{i=1}^n y_i^M(x_i - x_{i-1}). \end{eqnarray*} \ Lemma 2.2b. Let $S$ be a subdivision with $S: \{a=x_0< x_1 < x_2 < \ldots < x_{n-1} < x_n = b\}$ and let $f: [a,b] \rightarrow \mathbb{R}$. Then $f$ is R-integrable over [a,b] if and only if it is true that if $\epsilon >0$ then there exists a number $\delta > 0$ so that if $S$ is a subdivision of $[a,b]$ with mesh less than $\delta$ then \begin{eqnarray*} \mbox{Upper Sum}(S, f) - \mbox{Lower Sum}(S, f) & < & \epsilon. \end{eqnarray*} \ Hint: For each $n \in \mathbb{N}$ let $S_n$ be a subdivision of $[a,b]$ with $\mbox{mesh}(S_n) < \frac 1n$. Argue that the sequential limit of $\{\mbox{Lower Sum}(S_n, f)\}_{n=1}^\infty$ is $\int_{[a,b]}f$. (And observe that $\{\mbox{Upper Sum}(S_n, f)\}_{n=1}^\infty$ also converges to $\int_{[a,b]}f$.) \ Lemma 2.3b. If $f: [a,b] \rightarrow \mathbb{R}$ is continuous then $f$ satisfies the hypothesis of Lemma 2.2b. \ Hint: Use the uniform continuity theorem. \ Claim: Lemmas 2.2b and 2.3b imply Theorem 2.1. \ Lemma 2.4b. Suppose $f: [a,b] \rightarrow \mathbb{R}$ is continuous and $g: [b,c] \rightarrow \mathbb{R}$ is continuous and $h$ is defined as follows: $$h(x) = \left \{ \begin{array}{cccc} f(x) & \mbox{if } a\le x< b \\ d & \mbox{if } x=b \\ g(x) & \mbox{if } b < x \le c. \\ \end{array} \right . $$ \end{document}