Mathematics 5310.

AlgebraNotes00

Background Information and Definition of a Group.

Relations.

Definition. Suppose that each of A and B is a set. Then the Cartesian product $A \times B$ is defined to be:

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

Definition. The set R is a relation from A to B means that $R \subset A \times B$. If $(a, b) \in R$ then " a is related to b " is denoted by $a R b$. The symbol \sim is often used for relations. Thus for the relation $\sim, a \sim b$ means a is related to b according to the given relation R. (And sometimes I may use subscript \sim_{R} for emphasis.)

Definition. If R is a relation from the set A to the set B then the domain (Dom) and range (Rng) of R are defined as the following:

$$
\begin{aligned}
\operatorname{Dom}(R) & =\{a \in A \mid \text { there exists } b \in B \text { such that }(a, b) \in R\} \\
\operatorname{Rng}(R) & =\{b \in B \mid \text { there exists } a \in A \text { such that }(a, b) \in R\}
\end{aligned}
$$

Definition. A relation f from the set A to the set B (denoted by $f: A \rightarrow$ B) is said to be a function if for each $x \in \operatorname{Dom}(f)$ there is a unique element $y \in B$ so that $(x, y) \in f$. Notation: If f is a function and $(x, y) \in f$ then the unique element y is denoted by $f(x)$.

Definition. If R is a relation from the set A to the set B then the inverse relation, written as R^{-1}, is a relation from the set B to the set A defined by:

$$
R^{-1}=\{(b, a) \mid(a, b) \in R\} .
$$

Definition. If R is a relation from the set A to the set B and S is a relation from the set B to the set C then the composition of S and R relation, written as $S \circ R$, is a relation from the set A to the set C defined by:

$$
S \circ R=\{(a, c) \mid \text { there exists } b \in B \text { so that }(a, b) \in R,(b, c) \in S\} .
$$

[Convince yourself that this implies that if $a \sim_{R} b$ and $b \sim_{S} c$ then $a \sim_{S o R} c$.]
Definitions. Suppose that R is a relation from the set A to itself. We will use the notation $a \sim b$ to mean that a and b are in A and a is related to b or equivalently $(a, b) \in R$. Then:
R is said to be reflexive if $x \sim x$ for all $x \in A$.
R is said to be symmetric if it is true that if $x \sim y$ then $y \sim x$.
R is said to be transitive if it is true that if $x \sim y$ and $y \sim z$ then $x \sim z$.
Definition. A relation from a set into itself is said to be an equivalence relation if it is reflexive, symmetric and transitive. If \sim is an equivalence relation on the set X then $[x]_{\sim}$ denotes the equivalence class of x :

$$
x_{\sim}=\{y \in X \mid x \sim y\} .
$$

For ease of notation, the subscript is often omitted when the equivalence under consideration should be understood.

Definition. The function $f: A \rightarrow B$ is 1-to-1 (one-to-one) or injective means that if $f(x)=f(y)$ then $x=y$. It is onto or surjective if for each $b \in B$ there is an $a \in A$ so that $f(a)=b$. A bijection is a function that is both injective and surjective.

Groups.

A group (G, \cdot) is a set of elements G with an operation • that has the following properties:

1. Closure: if $x \in G$ and $y \in G$ then

$$
x \cdot y \in G
$$

2. Associativity: if $x, y, z \in G$ then

$$
(x \cdot y) \cdot z=x \cdot(y \cdot z)
$$

3. Identity: there is an element $e \in G$ so that for each $x \in G$:

$$
e \cdot x=x=x \cdot e
$$

4. Inverses: for each $x \in G$ there is an element x^{-1} so that

$$
x \cdot x^{-1}=e=x^{-1} \cdot x
$$

Note: In the abstract the operation \cdot is thought of as the function $\psi: G \times G \rightarrow$ G such that $\psi(x, y)=x \cdot y$. Furthermore, for east of notation and when no confusion is expected to arise, $x \cdot y$ is generally abbreviated $x y$.

Examples 0.1 and Exercises: For each of the following sets and indicated operation, determine if the object is a group; if it isn't a group, indicate which group properties are not satisfied.
a.) Set $=$ integers \mathbb{Z}, operation $=$ usual addition.
b.) Set $=$ integers \mathbb{Z}, operation $=$ usual multiplication.
c.) Set $=$ integers \mathbb{Z}, operation $=$ usual subtraction.
d.) Set $=$ real numbers \mathbb{R}, operation $=$ usual addition.
e.) Set $=$ real numbers \mathbb{R}, operation $=$ usual multiplication.
f.) Set $=$ positive real numbers $\{x \in \mathbb{R} \mid x>0\}$, operation $=$ usual multiplication.
g.) Set $=2 \times 2$ matrices each entry of which is a real number \mathbb{R}, operation $=$ usual addition.
h.) Set $=2 \times 2$ matrices each entry of which is a real number \mathbb{R}, operation $=$ usual multiplication.
i.) Set $=2 \times 2$ matrices each entry of which is a real number \mathbb{R} and whose determinant is 1 , operation $=$ usual multiplication.
j.) Set $=2 \times 2$ matrices each entry of which is a real number \mathbb{R} and whose determinant is ± 1, operation $=$ usual multiplication.
k.) Set $=\{-1,1\}$, operation $=$ usual multiplication.
l.) Set $=\{0,1\}$, operation $=$ usual multiplication.
m.) Set $=\prod_{i=1}^{n}\{-1,1\}$, operation $=$ termwise multiplication.
n.) Set $=$ the set of one-to-one onto functions from $\{1,2,3\}$ onto itself, operation $=$ composition of functions \circ.

Theorem 0.1 [Uniqueness of the identity]. Suppose that G is a group with identity e. If \hat{e} is an element of G so that for all $x \in G, \hat{e} x=x=x \hat{e}$ then $e=\hat{e}$.

Theorem 0.2 [Uniqueness of the inverse]. Suppose that G is a group with identity e and $x \in G$. Then there is a unique element $x^{\prime} \in G$ so that $x \cdot x^{\prime}=x^{\prime} \cdot x=e$. [Notation: the unique inverse of the element x is denoted by x^{-1}.]

Theorem 0.3. Suppose that G is a group and $x, y, z \in G$ are arbitrary elements. Then:

1. $\left(x^{-1}\right)^{-1}=x$.
2. $(x y)^{-1}=y^{-1} x^{-1}$.
3. $(x y=x z) \Rightarrow(y=z)$.
4. $(y x=z x) \Rightarrow(y=z)$.

Definition. A group G is said to be Abelian (or to be a commutative group) if and only if $x y=y x$ for all $x, y \in G$.

Exercise 0.2. Determine which groups from Examples 0.1 are Abelian i.e. for those for which the operation turns out to produce a group, determine if the group is abelian.

Definition. Suppose that G is a group with operation • and $H \subset G$. Then H is said to be a subgroup of G if H with the operation • is a group.

Definition. Suppose that each of G and H are groups with operations \otimes and \boxtimes respectively and that $\varphi: G \rightarrow H$ is a function. Then φ is called a homomorphism if the following holds for all $x, y \in G$:

$$
\varphi(x \otimes y)=\varphi(x) \boxtimes \varphi(y) .
$$

A homomorphism that is 1-to-1 and onto is called an isomorphism.
Notation. If G is a group with identity element e and $g \in G$ then:
i. g^{0} denotes e;
ii. g^{1} denotes g;
iii. for a positive integer $n>1, g^{n}$ is defined inductively as:

$$
g^{n}=g^{n-1} \cdot g .
$$

Theorem 0.4. Suppose that G is a group with the usual notation for the operation. Then:

$$
\begin{array}{ll}
\text { a. } & \left(g^{-1}\right)^{n}=\left(g^{n}\right)^{-1} \\
\text { b. } & \text { for } g \in G, n \in \mathbb{Z}^{n} \\
g^{n} \cdot g^{m}=g^{n+m} & \text { for } g \in G, n, m \in \mathbb{Z}^{+}
\end{array}
$$

Theorem 0.5. Suppose that G is a group and H is a subgroup of G. Define the relation \sim on G by $g \sim h$ if and only if $g h^{-1} \in H$. Then:
a. \sim is an equivalence relation on G.
b. Let $p \in G$ and define $H p=\{h p \mid h \in H\}$; then the function $f: H \rightarrow H p$ defined by $f(h)=h p$ is 1-to-1 and onto.
c. $[e]_{\sim}=H$.
d. The collection $\{H g \mid g \in G\}$ is a partition of G.
e. The function $\varphi: H \rightarrow H x$ defined by $\varphi(h)=h x$ is a bijection.

Theorem 0.6. If G is a finite group and H is a subgroup of G then $|H|||G|$.

