AlgebraNotes03 Exercises
 Creating the Rational from the Integers

As usual, lt \mathbb{Z} denote the positive integers. Let Q denote the following subset $\mathbb{Z} \times \mathbb{Z}$:

$$
Q=\{(x, y) \mid y \neq 0\}
$$

Define the relation \sim on Q by $(a, b) \sim(c, d)$ if and only if

$$
a d=b c
$$

Exercise 1. Prove that \sim is an equivalence relation. [Comment: since we are creating the rationals, we cannot use the properties of the rationals to verify that \sim is an equivalence relation. You may only use the axioms of the integers. So you may not use the fact that integers have multiplicative inverses; in fact this will be "proven" below. The replacement for not having a multiplicative inverse is the cancellation axiom (\# B5 in the axioms provided).]

Let \mathbb{Q} denote the set of equivalence classes for the relation \sim. As usual we will let $[(a, b)]$ denote the equivalence class that contains (a, b).

Exercise 2. Define the following operation \oplus on \mathbb{Q}.

$$
[(a, b)] \oplus[(c, d)]=[(a d+b c, b d)]
$$

where + and \cdot denote the usual addition and multiplication of the integers \mathbb{Z} respectively (see the axioms of the integers) and $x y$ denotes $x \cdot y$.

Prove that the operation \oplus is well defined.
Exercise 3. Prove that (\mathbb{Q}, \oplus) is a group; prove also that this group is Abelian.

Exercise 4. Prove that (\mathbb{Q}, \oplus) contains an isomorphic copy of the group $(\mathbb{Z},+)$.

Exercise 5. Define the operation \otimes on \mathbb{Q} as follows:

$$
[(a, b)] \otimes[(c, d)]=[(a c, b d)]
$$

Prove that \otimes is well defined.
Exercise 5'. Define the operation \boxplus on \mathbb{Q} as follows:

$$
[(a, b)] \boxplus[(c, d)]=[(a+c, b+d)]
$$

Prove that \boxplus is not well defined.

Although (\mathbb{Q}, \otimes) is not a group (make sure you know why). We have: Exercise 6. Prove that $(\mathbb{Q}-\{[(0,1)]\}, \otimes)$ is an Abelian group.

