AlgebraNotes03 Normal Subgroups and Homomorphisms

Definition. Suppose that (G, \star) is a group and \sim is an equivalence relation on G. Suppose further that we define an operation \ast on the equivalence classes by $[x] \ast [y] = [x \star y]$ (where [x] denotes the equivalence class of x.) Then the operation \ast is said to be well defined if it is true that when $x \sim a$ and $y \sim b$ we have $x \star y \sim a \star b$.

Suppose that each of G_1 and G_2 are groups with equivalence relations \sim_1 and \sim_2 respectively; suppose also that $\varphi: G_1 \to G_2$ is a function. Then the function F from the equivalence classes of \sim_1 to the equivalence classes of \sim_2 "defined" by $F([x]_1) = [\varphi(x)]_2$ is said to be well defined if it is true that when $x \sim_1 a$ we have $\varphi(x) \sim_2 \varphi(a)$.

Exercise 1. Determine if the following are well-defined functions. For n a positive integer, define the equivalence relation \sim_n on the integers by $x \sim_n y$ if and only if n|(y-x); we use the notation \mathbb{Z}_n to denote the equivalence classes of \sim_n .

a.) $f : \mathbb{Z}_5 \to \mathbb{Z}_5$ with $f([x]_5) = [7x]_5;$ b.) $g : \mathbb{Z}_5 \to \mathbb{Z}_6$ with $f([x]_5) = [7x]_6;$ c.) $f : \mathbb{Z}_{10} \to \mathbb{Z}_5$ with $f([x]_{10}) = [7x]_5.$

Definition. If G is a group and H is a subgroup of G then H is said to be a normal subgroup if and only if its left coset is equal to its right coset: gH = Hg.

Theorem 3.1. The subgroup H of the group G is normal if and only if for each $g \in G$, $gHg^{-1} = H$.

Definition. If G_1 and G_2 are groups and $\varphi : G_1 \to G_2$ is a homomorphism then the kernel, $\text{Ker}(\varphi)$ is

$$\operatorname{Ker}(\varphi) = \{ x \in G_1 | \varphi(x) = e_2 \}$$

where e_2 is the identity element of G_2 .

Theorem 3.2. If G_1 and G_2 are groups and $\varphi : G_1 \to G_2$ is a homomorphism then the kernel, $\text{Ker}(\varphi)$ is a normal subgroup of G_1 .

Theorem 3.21. Suppose that G and H are groups and $\varphi : G \to H$ is a homomorphism. Then for each $x \in G$, $\varphi(x^{-1}) = (\varphi(x))^{-1}$.

Exercises 2. Verify that the following functions are homomorphisms and find the kernels.

a.) $\varphi : (\mathbb{Z}_{12}, +_{12}) \to (\mathbb{Z}_4, +_4)$ defined by $\varphi([x]_{12}) = [x]_4$.

b.) $\varphi : (C_{\infty}([0,1]), +) \to (C_{\infty}([0,1]), +)$ defined by $\varphi(f) = f'$. (Where $C_{\infty}([0,1])$ denotes all the functions on the interval [0,1] which are *n*-times differentiable for all positive integers n.)

c.) $\varphi: (C_{\infty}([0,1]), +) \to (\mathbb{R}, +)$ defined by $\varphi(f) = \int_0^1 f(t) dt$. d.) $\varphi: (\mathbb{Z}_8, +_8) \to (\mathbb{Z}_5 - \{0\}, \cdot_5)$ defined by $\varphi([x]_8) = [3^x]_5$.

Exercise 3. Prove the following statements [I think that they are all true.]

a.) Suppose G is a finite group and $\varphi: G \to \hat{G}$ is a homomorphism (not necessarily onto) the group \hat{G} . Then

$$|\varphi(G)| ||G|.$$

b.) Suppose \hat{G} is a finite group and $\varphi: G \to \hat{G}$ is a homomorphism (not necessarily onto) from the group G into \hat{G} . Then

$$|\varphi(G)| |\hat{G}|.$$

c.) Suppose G is a finite group and $\varphi: G \to \hat{G}$ is a homomorphism from G onto the group \hat{G} . Then \hat{G} is abelian if and only if $xyx^{-1}y^{-1} \in \text{Ker}(\varphi)$ for all $x, y \in G$.

d.) If each of H and K is a normal subgroup of the group G, then $H \cap K$ is a normal subgroup of G. What about $H \cup K$?

Definition. Suppose that H is a subgroup of the group G. Then HxHy means Hxy for $x, y \in G$. [Recall that if G is a group with operation * then xy means x * y.]

Exercise 4. Let $G = (\mathbb{Z}, +)$ and $H = \{5n | n \in \mathbb{Z}\}$; then H is a subgroup of G.

a.) Show that the operation \oplus defined by $(H+x) \oplus (H+y) = H + (x+y)$ is well defined.

b.) Write the "addition" table for $\{H + x | x \in \mathbb{Z}\}$ with the operation \oplus and show that it's a group.

Definition Suppose that A and B are subsets of the group (G, \star) ; define $A \hat{\star} B$ by:

$$A\hat{\star}B = \{a \star b | a \in A, b \in B\}.$$

Note that \star may be, for example, multiplication or addition in the positive reals or integers respectively.

Lemma 3.3. If H is a normal subgroup of (G, \star) then,

$$(Hx \hat{\star} Hy = Hxy)$$

[Recall that xy means $x \star y$, so the above may be rewritten:

$$(H \star x)\hat{\star}(H \star y) = H \star (x \star y).$$

I use $\hat{\star}$ because \star and $\hat{\star}$ are two different operators, one is defined on the set G the other is defined on cosets of the subgroup H of G. In the future we will use the same symbol for both operators and in fact we will often rewrite , $(H \star x)\hat{\star}(H \star y) = H \star (x \star y)$ as HxHy = Hxy; especially when we are working in the general setting.]

Theorem 3.3. Suppose that H is a normal subgroup of (G, \star) . Then the operation $Hx \star Hy = Hxy$ is well defined. [I.e. $(H \star x) \hat{\star} (H \star y) = H \star (x \star y)$.]

Theorem 3.4. Let (G, \cdot) be a group and let G/H denote the collection of cosets of H in G. Suppose that H is a normal subgroup of G. Then the operation (with respect to \cdot , or more precisely, with respect to $\hat{\cdot}$) defined in Theorem 3.3 is a group operation on the set G/H of cosets of H in G.

Theorem 3.5. Suppose that H is a normal subgroup of G and let $\varphi : G \to G/H$ be defined by $\varphi(x) = Hx$ then φ is a homomorphism and $\text{Ker}(\varphi) = H$.

Theorem 3.6. Suppose that G and J are groups and $\varphi : G \to J$ is a homomorphism. Then $H = \{\varphi(g) \mid g \in G\}$ is a group.

Use theorems 3.2, 3.3, 3.4 and 3.6 to prove the first isomorphism theorem:

Theorem 3.7. Let G and J be groups and let $\varphi : G \to J$ be a homomorphism. Let $K = ker(\varphi)$ and $H = \{\varphi(g) \mid g \in G\}$. Then H is isomorphic to G/K.

Exercise 5. In the following assume that G is a group. a.) The center Z(G) of a group G is defined by:

$$Z(G) = \{x | xg = gx \text{ for all } g \in G\}.$$

Show that Z(G) is abelian.

b.) The commutator C(G) of a group G is defined by:

$$C(G) = \{xyx^{-1}y^{-1} | x, y \in G\}.$$

Show that if H is a subgroup of G containing C(G) then H is a normal subgroup of G.

c.) Suppose that H is a normal subgroup of G. Then G/H is abelian if and only if $C(G) \subset H$.