AlgebraNotes03
Normal Subgroups and Homomorphisms

Definition. Suppose that (G, *) is a group and ~ is an equivalence relation
on G. Suppose further that we define an operation * on the equivalence
classes by [z] * [y] = [x * y] (where [x] denotes the equivalence class of z.)
Then the operation * is said to be well defined if it is true that when x ~ a
and y ~ b we have x xy ~ a % b.

Suppose that each of Gy and G4 are groups with equivalence relations ~
and ~» respectively; suppose also that ¢ : G; — G5 is a function. Then the
function F' from the equivalence classes of ~; to the equivalence classes of
~y “defined” by F([z]1) = [p(x)]2 is said to be well defined if it is true that
when z ~; a we have p(x) ~9 p(a).

Exercise 1. Determine if the following are well-defined functions. For n a
positive integer, define the equivalence relation ~,, on the integers by x ~,, y
if and only if n|(y — z); we use the notation Z, to denote the equivalence
classes of ~,,.

a.) [ Zs — Zs with f([z]5) = [Tz]5;
b.) g Zs — Zg with f([z]5) = [Tz [] o

5 prm—
C.) f : ZIO — Z5 with f( I]w)
Definition. If G is a group and H is a subgroup of GG then H is said to
be a normal subgroup if and only if its left coset is equal to its right coset:
gH = Hg.

Theorem 3.1. The subgroup H of the group G is normal if and only if for
each g € G, gHg' = H.

Definition. If G; and G5 are groups and ¢ : G; — G5 is a homomorphism
then the kernel, Ker(yp) is

Ker(p) = {z € Gilp(x) = e}

where e; is the identity element of Gs.

Theorem 3.2. If G; and G5 are groups and ¢ : G; — (G5 is a homomor-
phism then the kernel, Ker(y) is a normal subgroup of Gj.
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Theorem 3.21. Suppose that G and H are groups and ¢ : G — H is a
homomorphism. Then for each z € G, p(z7') = (p(z)) .

Exercises 2. Verify that the following functions are homomorphisms and
find the kernels.

a.) ¢ : (Zyg,4+12) = (Zy, +4) defined by p([z]12) = [7]4.

b.) ¢ : (Cx([0,1]),4) — (Cx([0,1]),+) defined by ¢(f) = f'. (Where
C»([0,1]) denotes all the functions on the interval [0, 1] which are n-times
differentiable for all positive integers n.)

c.) ¢ (Cs([0,1]),+) = (R, +) defined by o(f) = [, f(t)dL.

d.) ¢ (Zs,+s) = (Zs — {0}, 5) defined by ¢([z]s) = [3"]5.
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Exercise 3. Prove the following statements [I think that they are all true.|
a.) Suppose G is a finite group and ¢ : G — G is a homomorphism (not
necessarily onto) the group GG. Then

(@)l

b.) Suppose G is a finite group and p:G— G is a homomorphism (not
necessarily onto) from the group G into G. Then

#(G)I|IG1.

c.) Suppose G is a finite group and ¢ : G — G is a homomorphism from
G onto the group G. Then G is abelian if and only if zyz 'y~ € Ker(yp) for
all x,y € G.

d.) If each of H and K is a normal subgroup of the group G, then H N K
is a normal subgroup of G. What about H U K?

Definition. Suppose that H is a subgroup of the group G. Then HxHy
means Hxy for x,y € G. [Recall that if G is a group with operation * then
Ty means T * y.]

Exercise 4. Let G = (Z,+) and H = {bn| n € Z}; then H is a subgroup
of G.

a.) Show that the operation @ defined by (H +z)® (H +y) = H+(z+y)
is well defined.



b.) Write the “addition” table for {H + x| x € Z} with the operation &
and show that it’s a group.

Definition Suppose that A and B are subsets of the group (G, ); define
AxB by:
A%B = {axbla € A,b € B}.

Note that * may be, for example, multiplication or addition in the positive
reals or integers respectively.

Lemma 3.3. If H is a normal subgroup of (G, *) then,
(HzxHy = Hzy.
[Recall that xy means x % y, so the above may be rewritten:
(H*x)*(Hxy) = H*(z*y).

I use * because x and * are two different operators, one is defined on the set
G the other is defined on cosets of the subgroup H of GG. In the future we
will use the same symbol for both operators and in fact we will often rewrite
, (Hxx)kx(H xy) = H % (x *y) as HtHy = Huxy; especially when we are
working in the general setting.]

Theorem 3.3. Suppose that H is a normal subgroup of (G, ). Then the
operation Hxx Hy = Hxy is well defined. [Le. (H*xx)*x(Hxy) = H*(zxy).|

Theorem 3.4. Let (G,-) be a group and let G/H denote the collection
of cosets of H in G. Suppose that H is a normal subgroup of G. Then the
operation (with respect to -, or more precisely, with respect to *) defined in
Theorem 3.3 is a group operation on the set G/H of cosets of H in G.

Theorem 3.5. Suppose that H is a normal subgroup of G and let ¢ : G —
G/H be defined by ¢(x) = Hz then ¢ is a homomorphism and Ker(y) = H.

Theorem 3.6. Suppose that G and J are groups and ¢ : G — J is a
homomorphism. Then H = {¢(g) | g € G} is a group.

Use theorems 3.2, 3.3, 3.4 and 3.6 to prove the first isomorphism theorem:



Theorem 3.7. Let G and J be groups and let ¢ : G — J be a homomor-
phism. Let K = ker(¢) and H = {¢(g) | ¢ € G}. Then H is isomorphic to
G/K.

Exercise 5. In the following assume that G is a group.
a.) The center Z(G) of a group G is defined by:

Z(G) = {z|zg = g for all g € G}.

Show that Z(G) is abelian.
b.) The commutator C(G) of a group G is defined by:

C(G) = {zyz~ty o,y € G}.

Show that if H is a subgroup of G containing C(G) then H is a normal
subgroup of G.

c.) Suppose that H is a normal subgroup of G. Then G/H is abelian if
and only if C(G) C H.



