
AlgebraNotes03
Normal Subgroups and Homomorphisms

Definition. Suppose that (G, ⋆) is a group and ∼ is an equivalence relation
on G. Suppose further that we define an operation ∗ on the equivalence
classes by [x] ∗ [y] = [x ⋆ y] (where [x] denotes the equivalence class of x.)
Then the operation ∗ is said to be well defined if it is true that when x ∼ a
and y ∼ b we have x ⋆ y ∼ a ⋆ b.

Suppose that each of G1 and G2 are groups with equivalence relations ∼1

and ∼2 respectively; suppose also that φ : G1 → G2 is a function. Then the
function F from the equivalence classes of ∼1 to the equivalence classes of
∼2 “defined” by F ([x]1) = [φ(x)]2 is said to be well defined if it is true that
when x ∼1 a we have φ(x) ∼2 φ(a).

Exercise 1. Determine if the following are well-defined functions. For n a
positive integer, define the equivalence relation ∼n on the integers by x ∼n y
if and only if n|(y − x); we use the notation Zn to denote the equivalence
classes of ∼n.

a.) f : Z5 → Z5 with f([x]5) = [7x]5;
b.) g : Z5 → Z6 with f([x]5) = [7x]6;
c.) f : Z10 → Z5 with f([x]10) = [7x]5.

Definition. If G is a group and H is a subgroup of G then H is said to
be a normal subgroup if and only if its left coset is equal to its right coset:
gH = Hg.

Theorem 3.1. The subgroup H of the group G is normal if and only if for
each g ∈ G, gHg−1 = H.

Definition. If G1 and G2 are groups and φ : G1 → G2 is a homomorphism
then the kernel, Ker(φ) is

Ker(φ) = {x ∈ G1|φ(x) = e2}

where e2 is the identity element of G2.

Theorem 3.2. If G1 and G2 are groups and φ : G1 → G2 is a homomor-
phism then the kernel, Ker(φ) is a normal subgroup of G1.
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Theorem 3.21. Suppose that G and H are groups and φ : G → H is a
homomorphism. Then for each x ∈ G, φ(x−1) = (φ(x))−1.

Exercises 2. Verify that the following functions are homomorphisms and
find the kernels.

a.) φ : (Z12,+12) → (Z4,+4) defined by φ([x]12) = [x]4.
b.) φ : (C∞([0, 1]),+) → (C∞([0, 1]),+) defined by φ(f) = f ′. (Where

C∞([0, 1]) denotes all the functions on the interval [0, 1] which are n-times
differentiable for all positive integers n.)

c.) φ : (C∞([0, 1]),+) → (R,+) defined by φ(f) =
∫ 1

0
f(t)dt.

d.) φ : (Z8,+8) → (Z5 − {0}, ·5) defined by φ([x]8) = [3x]5.

Exercise 3. Prove the following statements [I think that they are all true.]
a.) Suppose G is a finite group and φ : G → Ĝ is a homomorphism (not

necessarily onto) the group Ĝ. Then

|φ(G)|
∣∣∣|G|.

b.) Suppose Ĝ is a finite group and φ : G → Ĝ is a homomorphism (not
necessarily onto) from the group G into Ĝ. Then

|φ(G)|
∣∣∣|Ĝ|.

c.) Suppose G is a finite group and φ : G → Ĝ is a homomorphism from
G onto the group Ĝ. Then Ĝ is abelian if and only if xyx−1y−1 ∈ Ker(φ) for
all x, y ∈ G.

d.) If each of H and K is a normal subgroup of the group G, then H ∩K
is a normal subgroup of G. What about H ∪K?

Definition. Suppose that H is a subgroup of the group G. Then HxHy
means Hxy for x, y ∈ G. [Recall that if G is a group with operation ∗ then
xy means x ∗ y.]

Exercise 4. Let G = (Z,+) and H = {5n| n ∈ Z}; then H is a subgroup
of G.

a.) Show that the operation ⊕ defined by (H+x)⊕(H+y) = H+(x+y)
is well defined.
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b.) Write the “addition” table for {H + x| x ∈ Z} with the operation ⊕
and show that it’s a group.

Definition Suppose that A and B are subsets of the group (G, ⋆); define
A⋆̂B by:

A⋆̂B = {a ⋆ b|a ∈ A, b ∈ B}.

Note that ⋆ may be, for example, multiplication or addition in the positive
reals or integers respectively.

Lemma 3.3. If H is a normal subgroup of (G, ⋆) then,

(Hx⋆̂Hy = Hxy.

[Recall that xy means x ⋆ y, so the above may be rewritten:

(H ⋆ x)⋆̂(H ⋆ y) = H ⋆ (x ⋆ y).

I use ⋆̂ because ⋆ and ⋆̂ are two different operators, one is defined on the set
G the other is defined on cosets of the subgroup H of G. In the future we
will use the same symbol for both operators and in fact we will often rewrite
, (H ⋆ x)⋆̂(H ⋆ y) = H ⋆ (x ⋆ y) as HxHy = Hxy; especially when we are
working in the general setting.]

Theorem 3.3. Suppose that H is a normal subgroup of (G, ⋆). Then the
operation Hx⋆Hy = Hxy is well defined. [I.e. (H ⋆x)⋆̂(H ⋆y) = H ⋆ (x⋆y).]

Theorem 3.4. Let (G, ·) be a group and let G/H denote the collection
of cosets of H in G. Suppose that H is a normal subgroup of G. Then the
operation (with respect to ·, or more precisely, with respect to ·̂) defined in
Theorem 3.3 is a group operation on the set G/H of cosets of H in G.

Theorem 3.5. Suppose that H is a normal subgroup of G and let φ : G →
G/H be defined by φ(x) = Hx then φ is a homomorphism and Ker(φ) = H.

Theorem 3.6. Suppose that G and J are groups and φ : G → J is a
homomorphism. Then H = {φ(g) | g ∈ G} is a group.

Use theorems 3.2, 3.3, 3.4 and 3.6 to prove the first isomorphism theorem:
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Theorem 3.7. Let G and J be groups and let φ : G → J be a homomor-
phism. Let K = ker(φ) and H = {φ(g) | g ∈ G}. Then H is isomorphic to
G/K.

Exercise 5. In the following assume that G is a group.
a.) The center Z(G) of a group G is defined by:

Z(G) = {x|xg = gx for all g ∈ G}.

Show that Z(G) is abelian.
b.) The commutator C(G) of a group G is defined by:

C(G) = {xyx−1y−1|x, y ∈ G}.

Show that if H is a subgroup of G containing C(G) then H is a normal
subgroup of G.

c.) Suppose that H is a normal subgroup of G. Then G/H is abelian if
and only if C(G) ⊂ H.
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